當(dāng)前位置:首頁 > 通信技術(shù) > 云通信與安全
[導(dǎo)讀] 由騰訊云基礎(chǔ)產(chǎn)品中心、騰訊架構(gòu)平臺(tái)部組成的騰訊云FPGA聯(lián)合團(tuán)隊(duì),在這里介紹國內(nèi)首款FPGA云服務(wù)器的工程實(shí)現(xiàn)深度學(xué)習(xí)算法(AlexNet),討論深度學(xué)習(xí)算法FPGA硬件加速平臺(tái)的架構(gòu)。

由騰訊云基礎(chǔ)產(chǎn)品中心、騰訊架構(gòu)平臺(tái)部組成的騰訊云FPGA聯(lián)合團(tuán)隊(duì),在這里介紹國內(nèi)首款FPGA云服務(wù)器的工程實(shí)現(xiàn)深度學(xué)習(xí)算法(AlexNet),討論深度學(xué)習(xí)算法FPGA硬件加速平臺(tái)的架構(gòu)。

在1 月 20 日,騰訊云推出國內(nèi)首款高性能異構(gòu)計(jì)算基礎(chǔ)設(shè)施——FPGA 云服務(wù)器,將以云服務(wù)方式將大型公司才能長期支付使用的 FPGA 普及到更多企業(yè),企業(yè)只需支付相當(dāng)于通用CPU約40%的費(fèi)用,性能可提升至通用CPU服務(wù)器的30倍以上。具體分享內(nèi)容如下:
 

1. 綜述

  2016年3月份AI圍棋程序AlphaGo戰(zhàn)勝人類棋手李世石,點(diǎn)燃了業(yè)界對人工智能發(fā)展的熱情,人工智能成為未來的趨勢越來越接近。

人工智能包括三個(gè)要素:算法,計(jì)算和數(shù)據(jù)。人工智能算法目前最主流的是深度學(xué)習(xí)。計(jì)算所對應(yīng)的硬件平臺(tái)有:CPU、GPU、FPGA、ASIC。由于移動(dòng)互聯(lián)網(wǎng)的到來,用戶每天產(chǎn)生大量的數(shù)據(jù)被入口應(yīng)用收集:搜索、通訊。我們的QQ、微信業(yè)務(wù),用戶每天產(chǎn)生的圖片數(shù)量都是數(shù)億級別,如果我們把這些用戶產(chǎn)生的數(shù)據(jù)看成礦藏的話,計(jì)算所對應(yīng)的硬件平臺(tái)看成挖掘機(jī),挖掘機(jī)的挖掘效率就是各個(gè)計(jì)算硬件平臺(tái)對比的標(biāo)準(zhǔn)。

最初深度學(xué)習(xí)算法的主要計(jì)算平臺(tái)是 CPU,因?yàn)?CPU 通用性好,硬件框架已經(jīng)很成熟,對于程序員來說非常友好。然而,當(dāng)深度學(xué)習(xí)算法對運(yùn)算能力需求越來越大時(shí),人們發(fā)現(xiàn) CPU 執(zhí)行深度學(xué)習(xí)的效率并不高。CPU 為了滿足通用性,芯片面積有很大一部分都用于復(fù)雜的控制流和Cache緩存,留給運(yùn)算單元的面積并不多。這時(shí)候,GPU 進(jìn)入了深度學(xué)習(xí)研究者的視野。GPU原本的目的是圖像渲染,圖像渲染算法又因?yàn)橄袼嘏c像素之間相對獨(dú)立,GPU提供大量并行運(yùn)算單元,可以同時(shí)對很多像素進(jìn)行并行處理,而這個(gè)架構(gòu)正好能用在深度學(xué)習(xí)算法上。

GPU 運(yùn)行深度學(xué)習(xí)算法比 CPU 快很多,但是由于高昂的價(jià)格以及超大的功耗對于給其在IDC大規(guī)模部署帶來了諸多問題。有人就要問,如果做一個(gè)完全為深度學(xué)習(xí)設(shè)計(jì)的專用芯片(ASIC),會(huì)不會(huì)比 GPU 更有效率?事實(shí)上,要真的做一塊深度學(xué)習(xí)專用芯片面臨極大不確定性,首先為了性能必須使用最好的半導(dǎo)體制造工藝,而現(xiàn)在用最新的工藝制造芯片一次性成本就要幾百萬美元。去除資金問題,組織研發(fā)隊(duì)伍從頭開始設(shè)計(jì),完整的設(shè)計(jì)周期時(shí)間往往要到一年以上,但當(dāng)前深度學(xué)習(xí)算法又在不斷的更新,設(shè)計(jì)的專用芯片架構(gòu)是否適合最新的深度學(xué)習(xí)算法,風(fēng)險(xiǎn)很大??赡苡腥藭?huì)問Google不是做了深度學(xué)習(xí)設(shè)計(jì)的專用芯片TPU?從Google目前公布的性能功耗比提升量級(十倍以上的提升)上看,還遠(yuǎn)未達(dá)到專用處理器的提升上限,因此很可能本質(zhì)上采用是數(shù)據(jù)位寬更低的類GPU架構(gòu),可能還是具有較強(qiáng)的通用性。這幾年,F(xiàn)PGA 就吸引了大家的注意力,亞馬遜、facebook等互聯(lián)網(wǎng)公司在數(shù)據(jù)中心批量部署了FPGA來對自身的深度學(xué)習(xí)以云服務(wù)提供硬件平臺(tái)。

FPGA 全稱「可編輯門陣列」(Field Programmable Gate Array),其基本原理是在 FPGA 芯片內(nèi)集成大量的數(shù)字電路基本門電路以及存儲(chǔ)器,而用戶可以通過燒寫 FPGA 配置文件來來定義這些門電路以及存儲(chǔ)器之間的連線。這種燒入不是一次性的,即用戶今天可以把 FPGA 配置成一個(gè)圖像編解碼器,明天可以編輯配置文件把同一個(gè) FPGA 配置成一個(gè)音頻編解碼器,這個(gè)特性可以極大地提高數(shù)據(jù)中心彈性服務(wù)能力。所以說在 FPGA 可以快速實(shí)現(xiàn)為深度學(xué)習(xí)算法開發(fā)的芯片架構(gòu),而且成本比設(shè)計(jì)的專用芯片(ASIC)要便宜,當(dāng)然性能也沒有專用芯片(ASIC)強(qiáng)。ASIC是一錘子買賣,設(shè)計(jì)出來要是發(fā)現(xiàn)哪里不對基本就沒機(jī)會(huì)改了,但是 FPGA 可以通過重新配置來不停地試錯(cuò)知道獲得最佳方案,所以用 FPGA 開發(fā)的風(fēng)險(xiǎn)也遠(yuǎn)遠(yuǎn)小于 ASIC。

2. Alexnet 算法分析2.1 Alexnet模型結(jié)構(gòu)

Alexnet模型結(jié)構(gòu)如下圖2.1所示。

圖2.1 Alexnet模型

模型的輸入是3x224x224大小圖片,采用5(卷積層)+3(全連接層)層模型結(jié)構(gòu),部分層卷積后加入Relu,Pooling 和NormalizaTIon層,最后一層全連接層是輸出1000分類的softmax層。如表1所示,全部8層需要進(jìn)行1.45GFLOP次乘加計(jì)算,計(jì)算方法參考下文。

層數(shù)

kernel個(gè)數(shù)

每個(gè)kernel進(jìn)行卷積次數(shù)

每個(gè)kernel一次卷積運(yùn)算量

浮點(diǎn)乘加次數(shù)

 

第1層

96

3025

(1x363)x(363x1)

96x3025x363=105M=210MFLOP

 

第2層

256

729

(1x1200)x(1200x1)

256x729x1200=224M=448MFLOP

 

第3層

384

169

(1x2304)x(2304x1)

384x169x2304=150M=300MFLOP

 

第4層

384

169

(1x1728)x(1728x1)

384x169x1728=112M=224MFLOP

 

第5層

256

169

(1x1728)x(1728x1)

256x169x1728=75M=150MFLOP

 

第6層

1

4096

(1x9216)x(9216x1)

4096x9216=38M=76MFLOP

 

第7層

1

4096

(1x4096)x(4096x1)

4096x4096=17M=34MFLOP

 

第8層

1

1000

(1x4096)x(4096x1)

1000x4096=4M=8MFLOP

 

總和

1.45GFLOP

 

表2.1 Alexnet浮點(diǎn)計(jì)算量

2.2 Alexnet 卷積運(yùn)算特點(diǎn)

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動(dòng)力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉