電荷泵電源是什么?一文教會你
什么是電荷泵電源吶,通常來說電荷泵中的電容做了大部分工作,使得第二級的buck電路可以極大的減小輸出濾波電感的尺寸,同時,第二級的輸入電壓降低了,可以利用標準CMOS工藝制作的低壓開關管。
如圖,這是一個最簡單的電荷泵電源,用來實現(xiàn)1/2降壓的功能。
與基于電感的開關電源變換器相比,電荷泵尺寸小,沒有電感器和變壓器所帶的磁場和EMI干擾;而且,尤其是在集成電路中,與電感、變壓器相比,電容更容易與芯片集成,所以電荷泵被廣泛應用。
然而,傳統(tǒng)的利用電容電荷交換為放電電容充電的容性功率轉換會出現(xiàn)巨大損耗。 舉例來說,一個電壓為V的電容C,給另外一個電壓為0,容量同樣為C的電容充電。
充電前,兩者的能量總和為第一個電容的能量,1/2*C*V^2;
充電后,電荷重新分布,兩個電容的電壓均為1/2*V,兩個電容的能量總和為1/4*C*V^2。
損失了一半的能量。
容性功率轉換導致出現(xiàn)巨大損耗
進一步的分析表明,即使在理想開關的情況下,都是有損的,而且損耗和兩電容之間的開關的導通電阻無關。 這個損耗,叫做”Charge Redistribution Loss”,就是“電荷再分布損耗”。也就是說,只要兩個電容在有壓差的情況下,進行了電荷傳輸,就會有損耗。類似兩個木桶里有不同高度的水,把兩桶水位平均后水的總量沒有變,但是水的勢能改變了。 有人會問,理想開關的導通電阻是0,怎么還會有損耗呢?這個損耗到底去哪了? 其實,這個損耗歸根到底還是導通損耗。當理想開關導通電阻為0時,電阻兩端電壓為0,導通電流無窮大。零乘無窮大的結果是一個常數(shù)。
開關導致能量損耗
如圖,上半部分顯示的是一個電壓源,在有壓差的情況下硬開關的導致出現(xiàn)損耗。粉紅色的是電壓源的電壓,保持不變;淡藍色的是被充電的電容的電壓,逐漸建立起來的過程。右邊顯示的綠色線是充電電流。粉色的電壓源電壓減去淡藍色的電容電壓,就是開關兩端的壓差,與電流的乘積,就是導通損耗。 有多種方法,來消除或者減小這個導通損耗。 比如,采用ZVS的軟開關技術,使用電流源來給電容充電。電流源的電壓與被充電的電容保持同步,開關兩端沒有壓差,從而消除導通損耗。