電源散熱方法錦囊
我們都知道熱管理是電源管理的一個重要方面,它需要將組件和系統(tǒng)保持在溫度限制范圍內(nèi)。無源解決方案從散熱器和熱管開始,并可以使用風(fēng)扇進(jìn)行有源冷卻而使制冷效果得到增強(qiáng)。組件級和成品級的系統(tǒng)建模允許設(shè)計人員對制冷策略進(jìn)行一階近似分析。使用計算流體動力學(xué)做進(jìn)一步分析可以全面了解整體熱量情況以及制冷策略變化的影響。所有的熱管理解決方案都涉及尺寸、功率、效率、重量、可靠性以及成本等方面的權(quán)衡,并且必須對項(xiàng)目的優(yōu)先級和約束條件進(jìn)行評估。
電氣工程師提到“電源管理”這個詞時,大多數(shù)人會想到各種具有轉(zhuǎn)換器、穩(wěn)壓器和其他功率處理以及功率轉(zhuǎn)換功能的直流電源。但是,電源管理遠(yuǎn)不止這些功能。由于效率不夠,所有電源都會發(fā)熱并且所有組件都必須散熱。
因此,電源管理也涉及熱管理,尤其是電源相關(guān)功能的散熱會如何影響散熱設(shè)計與熱量累積。此外,即使組件和系統(tǒng)都在規(guī)格范圍內(nèi)持續(xù)工作,隨著組件參數(shù)漂移,溫度的增加也會引起性能的變化。就算不是全盤崩潰,也會導(dǎo)致最終的系統(tǒng)故障。熱量還會縮短組件壽命,進(jìn)而縮短平均故障間隔時間,這也是保證長期可靠性需要考慮的因素。
有兩個關(guān)于熱管理的觀點(diǎn),設(shè)計人員必須了解:
● “微觀”問題,單個組件由于發(fā)熱過多而處于過熱危險中,但系統(tǒng)的其余部分(及其外殼)溫度在可接受范圍內(nèi)。
● “宏觀”問題,由于多個來源的熱量累積而導(dǎo)致整個系統(tǒng)溫度過高。
一個設(shè)計挑戰(zhàn)是確定熱管理問題有多少屬于微觀,多少屬于宏觀,以及微觀問題與宏觀問題的關(guān)聯(lián)程度。很顯然,一個高溫組件 - 甚至溫度超過了其允許的極限 - 將會導(dǎo)致整個系統(tǒng)升溫,但這不一定意味著整個系統(tǒng)都很熱。但是,這意味著必須設(shè)法管理并減少該組件多余的熱量。
在討論熱管理和使用諸如“散熱”或“排熱”等詞時始終要牢記的一個問題是:這些熱量要散到哪里去? 憤世嫉俗的人可能會說,設(shè)計師就是以鄰為壑,找到一個地方散熱,把自己的問題變成別人的問題。
雖然這個觀點(diǎn)的確有點(diǎn)憤世嫉俗,但也有一定的道理。問題是要把熱量發(fā)散到較冷的地方,以免對系統(tǒng)產(chǎn)生不利影響。這個地方可以是系統(tǒng)和機(jī)箱的相鄰部分,也可以完全在機(jī)箱外部(僅當(dāng)外部比內(nèi)部溫度低時才有可能)。另外還要記住熱力學(xué)的一個定律:除非使用某種主動泵送機(jī)械,否則熱量只會從高溫位置向低溫位置傳遞。
熱管理解決方案
熱管理遵循物理學(xué)基本原理。在制冷模式下,熱傳導(dǎo)有三種方式:輻射、傳導(dǎo)和對流 (圖 1)
圖 1:熱傳遞有三種機(jī)制,特定情況下經(jīng)常是三種機(jī)制一起使用,只是使用程度不同(資料來源:Kmecfiunit/CC BY-SA 4.0)
最簡單的說法是:
● 輻射是指用電磁輻射(主要是紅外線)帶走熱量,這種熱傳遞可以發(fā)生在真空中。在大多數(shù)應(yīng)用中,這都不是主要的冷卻途徑,但在太空真空中就是。在太空中,輻射是從宇宙飛船吸走熱量的唯一途徑。
● 傳導(dǎo)是通過固體或液體的熱量流動,不過傳熱材料并不發(fā)生實(shí)際移動(當(dāng)然液體確實(shí)會流動)。
● 對流是像空氣或水這樣的流體介質(zhì)攜帶的熱量流動。
對于大多數(shù)電子系統(tǒng)來說,實(shí)現(xiàn)所需的冷卻是先以傳導(dǎo)的方式讓熱量離開直接熱源,然后再以對流的方式將其傳遞到其他地方。設(shè)計上的挑戰(zhàn)是需要將各種熱管理硬件(即原始的非電子意義上的硬件)結(jié)合起來,以有效地實(shí)現(xiàn)所需的傳導(dǎo)和對流。
有三個最常用的散熱元件:散熱器、熱管和風(fēng)扇。散熱器和熱管是無需電源的無源冷卻系統(tǒng),其還包括自然引發(fā)的傳導(dǎo)和對流方法。相比之下,風(fēng)扇是一種有源的強(qiáng)制風(fēng)冷系統(tǒng)。
先從散熱器開始
散熱器是鋁或銅結(jié)構(gòu),可通過傳導(dǎo)作用從熱源獲取熱量,并將熱量傳到氣流(在某些情況下,傳到水或其他液體)中以實(shí)現(xiàn)對流。散熱器有數(shù)千種尺寸規(guī)格和形狀,從連接單個晶體管的小型沖壓金屬翅片(圖 2)到具有許多可以攔截對流空氣流并將熱量傳輸?shù)皆摎饬鞯某崞?指形)的大型擠壓件(圖 3)。
圖 2:用簡單金屬片制成的 Aavid Thermalloy 574502B00000G 散熱片設(shè)計為滑動到 TO-220 封裝晶體管上,具有 21.2C/W 的熱阻,尺寸大約 10×22×19mm (資料來源:Aavid Thermalloy)
圖 3:來自 Cincom 的這些較大型擠壓式多翅片散熱器(M-C308、M-C091、M-C092)專為較大型 IC 和模塊而設(shè)計,最小的尺寸約為 60×60×20mm,最大的尺寸為 60×110×25mm (資料來源:Cincom Electronics)
散熱器的優(yōu)點(diǎn)之一是沒有移動部件,沒有運(yùn)行成本,也沒有故障模式。一旦適當(dāng)尺寸的散熱器連接到熱源,隨著暖空氣上升,對流就會自然而然地發(fā)生,從而開始并持續(xù)形成氣流。因此,在使用散熱器給熱源的入口和出口之間提供暢通的氣流時,這些優(yōu)點(diǎn)至關(guān)重要。 而且,入口必須在散熱器的下方并且出口在上方;否則,熱空氣會停滯在熱源之上,從而使情況進(jìn)一步惡化。
盡管散熱器易于使用,但它也的確有一些負(fù)面影響。首先,傳輸大熱量的散熱器體積大、成本高、重量大。而且它們必須正確放置,因此會影響或限制電路板的物理布局。它們的翅片也可能被氣流中的灰塵堵塞,從而大大降低效率。它們必須正確連接到熱源上,以使熱量能夠暢通地從熱源流向散熱器。
由于散熱器在尺寸、配置以及其他因素上有非常豐富的選擇,剛開始會使我們在選購時眼花繚亂。請注意,有許多通用散熱器以及針對特定集成電路 (IC),例如特定處理器或現(xiàn)場可編程門陣列 (FPGA) 型號的散熱器。
另外還有不是分立組件的散熱器。有些 IC 使用引腳或引線將熱量從其芯片和主體傳導(dǎo)到其 PC 板上,就相當(dāng)于是散熱器。其他的 IC 實(shí)際上在其封裝下有一個銅塞,當(dāng)它被焊接到 PC 板上時,這個金屬塊可用于為芯片降溫。這是一種低成本而又有效的散熱方式,但是這得假定 PC 板其余部分溫度較低并且附近沒有其他組件也使用該板散熱。實(shí)際上,每個器件都試圖將多余的廢熱排放到鄰近區(qū)域,這是一場零和游戲。
增加熱管
熱管理套件的另一個重要器件是熱管(圖 4)。這種無源組件接近于工程師所期望的“幾乎無成本”,因?yàn)樗恍枰魏涡问降闹鲃訌?qiáng)制機(jī)制就可以將熱量從 A 點(diǎn)傳送到 B 點(diǎn)。簡單來說就是,熱管是包含芯和工作流體的密封金屬管。熱管的作用是從熱源吸收熱量并將其傳送到較冷的區(qū)域,但它本身不作為散熱器。當(dāng)熱源附近沒有足夠的空間放置散熱器或氣流不足時便可以使用熱管。熱管工作效率高,可以將熱量從源頭傳送到更便于管理的地方。
圖 4:Wakefield-Vette(型號 120231)的微型熱管尺寸僅為 6mm×1.5mm,可傳輸最高達(dá) 25W 的熱負(fù)荷。 (資料來源:Wakefield-Vette)
熱管是如何工作的?它的原理簡單而巧妙:它實(shí)現(xiàn)了形態(tài)轉(zhuǎn)變,這是熱物理學(xué)的一個基本原理。熱源在密封管內(nèi)將工作流體轉(zhuǎn)變成蒸汽,而蒸汽帶著熱量傳遞到熱管的較冷端。在這一端,蒸氣冷凝成液體并釋放出熱量,而流體再返回到較熱端。這種氣 - 液形態(tài)轉(zhuǎn)變過程是連續(xù)運(yùn)行的,并且僅由冷端和熱端的溫度差驅(qū)動。
熱管有多種直徑和長度,大部分的直徑大約在四分之一英寸到二分之一英寸之間,長度在幾英寸到約一英尺之間。與水管一樣,直徑大的管道能傳送更多的熱量。在冷端連接散熱器或其他冷卻裝置可以解決氣流受阻的局部熱點(diǎn)的散熱問題。
增加風(fēng)扇
最后還有風(fēng)扇(圖 5),它標(biāo)志著拋開無需電源的無源散熱器和熱管,走向強(qiáng)制風(fēng)冷的有源散熱裝置的第一步。風(fēng)扇可以解決散熱問題,但也有讓人頭痛的地方,所以設(shè)計師在使用時經(jīng)常心情復(fù)雜。
圖 5:Delta Electronics 的 ASB0305HP-00CP4 微型風(fēng)扇,30mm 直徑 x 6.5mm 深,采用單個+ 5V 脈寬調(diào)制器 (PWM) 信號,能夠提供約 0.144m3/min (5ft.3/min) 的氣流。它由 PWM 信號驅(qū)動,并包含轉(zhuǎn)速計反饋信號 (資料來源:Delta Electronics)
很顯然,風(fēng)扇會增加成本,需要空間,并且增加了系統(tǒng)噪音。作為一種機(jī)電器件,風(fēng)扇還容易發(fā)生故障,消耗能量并影響整個系統(tǒng)的效率。但在許多情況下,尤其是當(dāng)氣流路徑是彎曲、垂直的或者不暢通時,它們通常是獲得足夠氣流的唯一途徑。許多應(yīng)用都使用那些僅在需要時才運(yùn)行的熱控制風(fēng)扇以降低轉(zhuǎn)速,從而降低功耗,并采用可在最佳運(yùn)行速度下最大限度降低噪音的葉片。
定義風(fēng)扇能力的關(guān)鍵參數(shù)是每分鐘空氣的單位長度或單位體積流量。物理尺寸也是一個問題; 顯然,低轉(zhuǎn)速大風(fēng)扇可以產(chǎn)生與高轉(zhuǎn)速小風(fēng)扇相同的氣流,因此存在尺寸與速度的取舍平衡。 有些設(shè)計使用內(nèi)部導(dǎo)風(fēng)板來引導(dǎo)氣流通過熱區(qū)域和散熱器以獲得最佳性能。
建模及綜合仿真
單獨(dú)使用無源冷卻系統(tǒng)還是使用強(qiáng)制風(fēng)冷的有源系統(tǒng)往往是一個困難的決定。單獨(dú)的無源系統(tǒng)尺寸較大,但更高效且可靠,而風(fēng)扇卻可以在不能單獨(dú)使用無源冷卻的情況下發(fā)揮作用。
當(dāng)然,有些情況下單獨(dú)使用無源系統(tǒng)是不恰當(dāng)或者不切實(shí)際的。其中一個例子是汽車發(fā)動機(jī)的熱管理問題。早期使用小型發(fā)動機(jī)的汽車以汽缸頂部的翅片作為散熱器,進(jìn)行無源冷卻。 隨著發(fā)動機(jī)的變大和熱負(fù)荷的增加,這些翅片變得大而笨重,因此加入了循環(huán)流體以將熱量從翅片上帶走并傳送到散熱器。當(dāng)汽車移動時空氣通過該散熱器流動,這也是一種無源散熱系統(tǒng)。但最終,隨著發(fā)動機(jī)變得更大,無源散熱方法已無法滿足需求,除非車輛移動,否則很容易過熱。因此,在散熱器后面增加一個風(fēng)扇,不管汽車的速度如何,都會讓空氣通過它。
建模和仿真對于高效熱管理策略至關(guān)重要,可用來確定需要多少冷氣以及如何實(shí)現(xiàn)冷卻。好消息是,這比射頻或電磁場的寄生和異常等其他類型的電子建模要容易和精確得多。
對于微型模型來說,熱源及其所有熱量流通路徑的特征在于它們的熱阻,而熱阻由其使用的材料、質(zhì)量和尺寸決定。建模顯示熱量如何從熱源流出,也是評估因自身散熱而導(dǎo)致熱事故的組件的第一步,例如高散熱 IC、MOSFET 和絕緣柵雙極晶體管 (IGBT),甚至是電阻。這些器件的供應(yīng)商通常提供熱模型,而這些模型能夠提供從熱源到器件表面的熱路徑細(xì)節(jié)(圖 6)。
圖 6:所安裝 FET 的機(jī)械模型 (左) 用于開發(fā)等效的熱阻模型 (右),以模擬器件的散熱情況 (資料來源:International Rectifier/Infineon)
請注意,對于某些組件,其各個表面的溫度可能不同。例如,芯片的底面自然會比封裝頂部的頂面更熱一些,所以供應(yīng)商可能會將封裝設(shè)計為向頂部傳送更多的熱量,從而更好地利用頂面散熱器。
一旦各組件代表的熱負(fù)載已知,下一步就是宏觀層面建模,這一點(diǎn)既簡單又復(fù)雜。作為一階近似,通過各種熱源的氣流可以調(diào)整大小以將其溫度保持在允許的限值以下。使用空氣溫度、非強(qiáng)制氣流可用流量、風(fēng)扇氣流量和其他因素進(jìn)行基本的計算就可以大致了解溫度狀況。
下一步是使用各種熱源的模型以及位置、PC 板、外殼表面和其他因素,對整個產(chǎn)品及其封裝進(jìn)行更復(fù)雜的建模。這種類型的建?;谟嬎懔黧w動力學(xué) (CFD),可以非常準(zhǔn)確地顯示封裝中每個位置的溫度 (圖 7)。
圖 7:使用計算流體動力學(xué) (CFD) 分析,可以看到整個系統(tǒng)或電路板上的詳細(xì)熱分布情況。例如圖中可以看出該 PC 板有三個主要熱源 (紅色),并且熱量可以在擴(kuò)展板上左右流動 (資料來源:Texas Instruments)
通過做出“假設(shè)”調(diào)整,設(shè)計人員可以查看更大的空氣端口是否需要更多空氣,確定其他氣流路徑是否更有效,識別使用更大或不同散熱器的差異之處,調(diào)查關(guān)于使用熱管移動熱點(diǎn)的情況等。這些 CFD 建模軟件包可生成表格化數(shù)據(jù)以及散熱情況的彩色圖像。風(fēng)扇尺寸、氣流和位置的影響變化也很容易建模。
最后,建模還要解決另外兩個問題。首先,存在峰值與平均耗散的問題。熱耗散持續(xù)為 1W 的穩(wěn)態(tài)組件與熱耗散 10W 但具有 10%間歇占空比的器件相比,具有不同的熱影響。原因是即使平均熱耗散相同,相關(guān)的熱質(zhì)量和熱流量也會導(dǎo)致不同的熱分布。大多數(shù) CFD 應(yīng)用程序可以將靜態(tài)與動態(tài)結(jié)合起來進(jìn)行分析。
其次,組件級微型模型必須考慮表面之間物理連接的不完善性,例如 IC 封裝頂部與散熱器之間的物理連接。如果這個連接有微小的間距,那么這條路徑的熱阻就會相對較高。因此,在這些表面之間通常使用薄的導(dǎo)熱墊來增強(qiáng)路徑的導(dǎo)熱性(圖 8)。
圖 8:由于存在微小的氣隙,用戶通??梢圆迦雽?dǎo)熱但電絕緣的墊片以盡量減輕 IC 及其散熱片之間的熱阻,例如具有 5.0W/m-K 熱阻的 AP PAD HC 5.0 熱接口高柔性硅基墊 (資料來源:Bergquist Company)