當(dāng)前位置:首頁 > 芯聞號 > 技術(shù)解析
[導(dǎo)讀]本文中,小編將戳高速ADC電源設(shè)計的下篇內(nèi)容予以介紹。

ADC在實際應(yīng)用中,具有重要地位。很多電子專業(yè)的朋友,都在積極學(xué)習(xí)ADC相關(guān)知識。上篇ADC相關(guān)文章中,小編為大家?guī)砹烁咚貯DC電源設(shè)計的上篇內(nèi)容。本文中,小編將戳高速ADC電源設(shè)計的下篇內(nèi)容予以介紹。如果你對ADC具有興趣,不妨繼續(xù)往下閱讀哦。

一、電源測試

圖6所示為在系統(tǒng)板上測量ADC PSRR的設(shè)置。分別測量每個電源,以便更好地了解當(dāng)一個交流信號施加于待測電源之上時,ADC的動態(tài)特性。開始時使用一個高容值電容,例如100 μF非極化電解質(zhì)電容。電感使用1 mH,充當(dāng)直流電源的交流阻塞器,一般將它稱為“偏置-T”,可以購買采用連接器式封裝的產(chǎn)品。

使用示波器測量交流信號的幅度,將一個示波器探針放在電源進(jìn)入待測ADC的電源引腳上。為簡化起見,將施加于電源上的交流信號量定義為一個與轉(zhuǎn)換器輸入滿量程相關(guān)的值。例如,如果ADC的滿量程為2V p-p,則使用200 mV p-p或–20 dB。接下來讓轉(zhuǎn)換器的輸入端接地(不施加模擬信號),查找噪底/FFT頻譜中處于測試頻率的誤差雜散,如圖5所示。若要計算PSRR,只需從FFT頻譜上所示的誤差雜散值中減去–20 dB即可。例如,如果誤差雜散出現(xiàn)在噪底的–80 dB處,則PSRR為–80 dB – –20 dB,即–60 dB(PSRR = 誤差雜散(dB) – 示波器測量結(jié)果(dB))。–60 dB的值似乎并不大,但如果換算成電壓,它相當(dāng)于1 mV/V(或10?60/20),這個數(shù)字對于任何轉(zhuǎn)換器數(shù)據(jù)手冊中的PSRR規(guī)格而言都并不鮮見。

下一步是改變交流信號的頻率和幅度,以便確定ADC在系統(tǒng)板中的PSRR特性。數(shù)據(jù)手冊中的大部分?jǐn)?shù)值是典型值,可能只針對最差工作條件或最差性能的電源。例如,相對于其他電源,5 V模擬電源可能是最差的。應(yīng)確保所有電源的特性都有說明,如果說明得不全面,請咨詢廠家。這樣,設(shè)計人員將能為每個電源設(shè)置適當(dāng)?shù)脑O(shè)計約束條件。請記住,使用LC配置測試PSRR/PSMR時有一個缺點。當(dāng)掃描目標(biāo)頻段時,為使ADC電源引腳達(dá)到所需的輸入電平,波形發(fā)生器輸出端所需的信號電平可能非常高。這是因為LC配置會在某一頻率(該頻率取決于所選的值)形成陷波濾波器。這會大大增加陷波濾波器處的接地電流,該電流可能會進(jìn)入模擬輸入端。要解決這一問題,只需在測試頻率造成測量困難時換入新的LC值。這里還應(yīng)注意,LC網(wǎng)絡(luò)在直流條件下也會發(fā)生損耗。記住要在ADC的電源引腳上測量直流電源,以便補償該損耗。例如,5 V電源經(jīng)過LC網(wǎng)絡(luò)后,系統(tǒng)板上可能只有4.8 V。要補償該損耗,只需升高電源電壓即可。

PSMR的測量方式基本上與PSRR相同。不過在測量PSMR時,需將一個模擬輸入頻率施加于測試設(shè)置,如圖7所示。另一個區(qū)別是僅在低頻施加調(diào)制或誤差信號,目的是查看此信號與施加于轉(zhuǎn)換器的模擬輸入頻率的混頻效應(yīng)。對于這種測試,通常使用1 kHz至100 kHz頻率。只要能在基頻周圍看到誤差信號即混頻結(jié)果,則說明誤差信號的幅度可以保持相對恒定。但也不妨改變所施加的調(diào)制誤差信號幅度,以便進(jìn)行檢查,確保此值恒定。為了獲得最終結(jié)果,最高(最差)調(diào)制雜散相對于基頻的幅度之差將決定PSMR規(guī)格。圖8所示為實測PSMR FFT頻譜的示例。

二、電源噪聲分析

對于轉(zhuǎn)換器和最終的系統(tǒng)而言,必須確保任意給定輸入上的噪聲不會影響性能。前面已經(jīng)介紹了PSRR和PSMR及其重要意義,下面將通過一個示例說明如何應(yīng)用所測得的數(shù)值。該示例將有助于設(shè)計人員明白,為了了解電源噪聲并滿足系統(tǒng)設(shè)計需求,應(yīng)當(dāng)注意哪些方面以及如何正確設(shè)計。

首先,選擇轉(zhuǎn)換器,然后選擇調(diào)節(jié)器、LDO、開關(guān)調(diào)節(jié)器等。并非所有調(diào)節(jié)器都適用。應(yīng)當(dāng)查看調(diào)節(jié)器數(shù)據(jù)手冊中的噪聲和紋波指標(biāo),以及開關(guān)頻率(如果使用開關(guān)調(diào)節(jié)器)。典型調(diào)節(jié)器在100 kHz帶寬內(nèi)可能具有10 μV rms噪聲。假設(shè)該噪聲為白噪聲,則它在目標(biāo)頻段內(nèi)相當(dāng)于31.6 nV rms/√Hz的噪聲密度。

接著檢查轉(zhuǎn)換器的電源抑制指標(biāo),了解轉(zhuǎn)換器的性能何時會因為電源噪聲而下降。在第一奈奎斯特區(qū)fS/2,大多數(shù)高速轉(zhuǎn)換器的PSRR典型值為60 dB (1 mV/V)。如果數(shù)據(jù)手冊未給出該值,請按照前述方法進(jìn)行測量,或者詢問廠家。使用一個2 V p-p滿量程輸入范圍、78 dB SNR和125 MSPS采樣速率的16位ADC,其噪底為11.26 nV rms。任何來源的噪

聲都必須低于此值,以防其影響轉(zhuǎn)換器。在第一奈奎斯特區(qū),轉(zhuǎn)換器噪聲將是89.02 μV rms (11.26 nV rms/√Hz) &TImes; √(125 MHz/2)。雖然調(diào)節(jié)器的噪聲(31.6 nv/√Hz)是轉(zhuǎn)換器的兩倍以上,但轉(zhuǎn)換器有60 dB的PSRR,它會將開關(guān)調(diào)節(jié)器的噪聲抑制到31.6 pV/√Hz (31.6 nV/√Hz × 1 mV/V)。這一噪聲比轉(zhuǎn)換器的噪底小得多,因此調(diào)節(jié)器的噪聲不會降低轉(zhuǎn)換器的性能。

電源濾波、接地和布局同樣重要。在ADC電源引腳上增加0.1 μF電容可使噪聲低于前述計算值。請記住,某些電源引腳吸取的電流較多,或者比其他電源引腳更敏感。因此應(yīng)當(dāng)慎用去耦電容,但要注意某些電源引腳可能需要額外的去耦電容。在電源輸出端增加一個簡單的LC濾波器也有助于降低噪聲。不過,當(dāng)使用開關(guān)調(diào)節(jié)器時,級聯(lián)濾波器能將噪聲抑制到更低水平。需要記住的是,每增加一級增益就會每10倍頻程增加大約20 dB。

最后需要注意的一點是,這種分析僅針對單個轉(zhuǎn)換器而言。如果系統(tǒng)涉及到多個轉(zhuǎn)換器或通道,噪聲分析將有所不同。例如,超聲系統(tǒng)采用許多ADC通道,這些通道以數(shù)字方式求和來提高動態(tài)范圍?;径?,通道數(shù)量每增加一倍,轉(zhuǎn)換器/系統(tǒng)的噪底就會降低3 dB。對于上例,如果使用兩個轉(zhuǎn)換器,轉(zhuǎn)換器的噪底將變?yōu)橐话??3 dB);如果使用四個轉(zhuǎn)器,噪底將變?yōu)?6 dB。之所以如此,是因為每個轉(zhuǎn)換器可以當(dāng)作不相關(guān)的噪聲源來對待。不相關(guān)噪聲源彼此之間是獨立的,因此可以進(jìn)行RSS(平方和的平方根)計算。最終,隨著通道數(shù)量增加,系統(tǒng)的噪底降低,系統(tǒng)將變得更敏感,對電源的設(shè)計約束條件也更嚴(yán)格。

以上便是此次小編帶來的“ADC”相關(guān)內(nèi)容,通過本文,希望大家對高速ADC電源設(shè)計具備一定的了解。如果你喜歡本文,不妨持續(xù)關(guān)注我們網(wǎng)站哦,小編將于后期帶來更多精彩內(nèi)容。最后,十分感謝大家的閱讀,have a nice day!

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉