在傳感器使用中,我們常常需要對傳感器數(shù)據(jù)進(jìn)行各種整理,讓應(yīng)用獲得更好的效果,以下介紹幾種常用的簡單處理方法:
- 加權(quán)平滑:平滑和均衡傳感器數(shù)據(jù),減小偶然數(shù)據(jù)突變的影響。
- 抽取突變:去除靜態(tài)和緩慢變化的數(shù)據(jù)背景,強(qiáng)調(diào)瞬間變化。
- 簡單移動平均線:保留數(shù)據(jù)流最近的K個數(shù)據(jù),取平均值。
下面,具體介紹一下這3種處理方法。
加權(quán)平滑,使用算法如下:(新值) = (舊值)*(1 - a) X * a其中a為設(shè)置的權(quán)值,X為最新數(shù)據(jù),程序?qū)崿F(xiàn)如下:
float ALPHA = 0.1f;
public void onSensorChanged(SensorEvent event){
x = event.values[0];
y = event.values[1];
z = event.values[2];
mLowPassX = lowPass(x,mLowPassX);
mLowPassY = lowPass(x,mLowPassY);
mLowPassZ = lowPass(x,mLowPassZ);
}
private float lowPass(float current,float last){
return last * (1.0f - ALPHA) current * ALPHA;
}
抽取突變采用上面加權(quán)平滑的逆算法,實(shí)現(xiàn)代碼如下:
public void onSensorChanged(SensorEvent event){
final float ALPHA = 0.8;gravity[0] = ALPHA * gravity[0] (1-ALPHA) * event.values[0];
gravity[1] = ALPHA * gravity[1] (1-ALPHA) * event.values[1];
gravity[2] = ALPHA * gravity[2] (1-ALPHA) * event.values[2];filteredValues[0] = event.values[0] - gravity[0];
filteredValues[1] = event.values[1] - gravity[1];
filteredValues[2] = event.values[2] - gravity[2];
}
簡單移動平均線,保留傳感器數(shù)據(jù)流中最近的K個數(shù)據(jù),返回它們的平均值。k表示平均“窗口”的大小,實(shí)現(xiàn)代碼如下:
public class MovingAverage{
private float circularBuffer[]; //保存?zhèn)鞲衅髯罱腒個數(shù)據(jù)
private float avg; //返回到傳感器平均值
private float sum; //數(shù)值中傳感器數(shù)據(jù)的和
private float circularIndex; //傳感器數(shù)據(jù)數(shù)組節(jié)點(diǎn)位置
private int count;public MovingAverage(int k){
circularBuffer = new float[k];
count= 0;
circularIndex = 0;
avg = 0;
sum = 0;
}
public float getValue(){
return arg;
}
public long getCount(){
return count;
}
private void primeBuffer(float val){
for(int i=0;i
circularBuffer[i] = val;
sum = val;
}
}
private int nextIndex(int curIndex){
if(curIndex 1 >= circularBuffer.length){
return 0;
}
return curIndex 1;
}
public void pushValue(float x){
if(0 == count ){
primeBuffer(x);
}
float lastValue = circularBuffer[circularIndex];
circularBuffer[circularIndex] = x; //更新窗口中傳感器數(shù)據(jù)
sum -= lastValue; //更新窗口中傳感器數(shù)據(jù)和
sum = x;
avg = sum / circularBuffer.length; //計(jì)算得傳感器平均值
circularIndex = nextIndex(circularIndex);
}
}