硬件|電路設(shè)計中,如何正確認識磁珠的性能參數(shù)?
回復(fù)【經(jīng)典電路】,獲取5000個經(jīng)典電路
回復(fù)【論文】,獲取畢業(yè)設(shè)計、電子競賽、學(xué)術(shù)專業(yè)等相關(guān)論文資料回復(fù)【電容】,獲取電容、元器件選型相關(guān)的內(nèi)容;
回復(fù)【阻抗匹配】,獲取電磁兼容性、阻抗匹配相關(guān)的資料回復(fù)【資料】,獲取全部電子設(shè)計、單片機開發(fā)相關(guān)的資料回復(fù)【終端電阻】,獲取CAN終端電阻相關(guān)的資料回復(fù)【單片機】,獲取單片機全套視頻教程和參考設(shè)計
…………
歡迎關(guān)注【玩轉(zhuǎn)單片機與嵌入式】公眾號。本公眾號會以連載的形式推出一系列關(guān)于STM32學(xué)習(xí)的教程,歡迎關(guān)注。出品?21ic論壇? kk的回憶
網(wǎng)站:bbs.21ic.com
最近有一些關(guān)于磁珠的介紹,剛好工作中也有一些應(yīng)用,有些了解到的知識點,在論壇大家分享。
1.基本介紹:
鐵氧體的磁珠在電路中用較多的應(yīng)用,鐵氧體珠是一種能在較寬頻率范圍內(nèi)濾除高頻噪聲能量的無源器件。它在預(yù)期設(shè)計的頻率范圍內(nèi)變得具有電阻性,并以熱的形式耗散噪聲能量。鐵氧體磁珠與電源串聯(lián)連接,通常與電容器組合在一起。
一般鐵氧體磁珠分為兩類:
一種是高Q值磁珠-通常用作諧振器,不能用于電源的隔離電路。
另一種是低Q值磁珠,其損耗更大,是很好的電路濾波器網(wǎng)絡(luò),因為它們被設(shè)計成吸收高頻噪聲電流并將其作為熱量散發(fā)。這類型的磁珠在寬高頻波段具有高阻抗,使它們成為理想的低通噪聲濾波器;
一般我們拿到磁珠的datasheet后,不同生產(chǎn)廠商的磁珠規(guī)格基本大同小異的,都會包含以下一些規(guī)格參數(shù):阻抗@100MHz,額定電流(rated current),DCR阻值。如下圖村田磁珠所示
還會提供磁珠的通用等效模型,一般是LR串聯(lián)模型,詳細的SPICE等效模型需要進一步像磁珠生產(chǎn)廠商咨詢
這些信息是磁珠的重要電氣參數(shù),是在電路設(shè)計中需要仔細斟酌考慮的參數(shù)。這些性能參數(shù)在不同直流偏置和電壓的情況下,是會發(fā)生變化,并不是datasheet中描述的一成不變。在電路設(shè)計中不當使用鐵氧體珠就會導(dǎo)致一些危害的:造成不必要的共振。直流偏置電流的變化對磁珠的影響,降低了珠的EMI抑制能力。只有正確認識和考慮鐵素體磁珠的性能參數(shù)了,這些問題是可以避免的。在這個帖文主要對磁珠的兩個方面的使用情況進行討論:1.不同的直流偏置電流情況下,磁阻的阻抗頻率曲線會發(fā)生變化;2.磁珠和電容組成的電路會產(chǎn)生LC諧振效應(yīng)。在討論之前,先對磁珠的SPICE模型做一個簡要說明;
2.磁珠的簡要SPICE模型
鐵氧體磁珠可以被建模為由電阻、電感和電容組成的簡化電路,如下圖所示。RDC對應(yīng)于珠子的直流電阻。CPAR、LBEAD和RAC分別是寄生電容、磁珠電感和與磁珠相關(guān)聯(lián)的交流電阻(交流磁芯損耗),這個模型和磁珠的datasheet描述的等效電路不一樣,更加詳細;
上圖的阻抗頻率曲線是以Tyco Electronics的BMB2A1000LN2多層鐵氧體珠為例。在直流偏置電流為零時的測試情況下得到的。根據(jù)廠家提供的SPICE模型,可以得到該磁珠的等效電路模型,如下圖所示:
除此之外,還有更復(fù)雜的SPICE模型,下圖是Chilisin-UPB321611T-600-N提供的參數(shù),更加復(fù)雜。有這些模型,在仿真的時候得到數(shù)據(jù)更加準確,也有利于電路設(shè)計的預(yù)分析,選擇更加合適的磁珠用于實際電路?,F(xiàn)在有很多通用的磁珠模型可以借鑒,但是由磁珠生產(chǎn)廠商提供的SPICE模型,參考意義更大。
3.直流偏置電流的影響
鐵氧體磁珠的模型可用于噪聲濾波電路的設(shè)計和分析。例如,在低通濾波網(wǎng)絡(luò)中,當結(jié)合去耦電容使用時,磁珠的電感特性有利于諧振頻率的設(shè)定。但上述的電路模型是一個直流偏置電流為零的近似,這個模型可能會隨著直流偏置電流而改變。尤其是在大功率應(yīng)用場合,選擇合適的鐵氧體磁珠不僅需要仔細考慮濾波器的帶寬,還需要考慮磁珠相對于直流偏置電流的阻抗特性。在大多數(shù)情況下,制造商只指定在100MHz的阻抗,并發(fā)布帶有零直流偏置電流頻率響應(yīng)曲線的數(shù)據(jù)表。然而,當使用鐵氧體磁珠進行電源濾波時,通過鐵氧體珠的負載電流永遠不會為零,并且隨著直流偏置電流從零開始增加,這些參數(shù)都發(fā)生了顯著的變化。當直流偏置電流增加時,鐵芯材料開始飽和,這將顯著降低鐵氧體珠的等效電感。電感飽和的程度取決于組件的核心所使用的材料。下圖顯示了兩個鐵氧體磁珠的電感的典型直流偏置關(guān)系。當額定電流為50%時,電感降低高達90%。
不僅磁珠中等效電感會隨DC電流的增大而降低。電感的DC電流達到飽和電流的時候,電感值會降低30%左右。這個特性在電感的datasheet都會標示出來,所以選擇電感的時候要注意飽和電流的選擇,應(yīng)用的DC電流不要超過飽和電流值。
為了實現(xiàn)有效濾除電源噪音的設(shè)計效果,通用的設(shè)計準則是使用額定直流電流約20%的鐵氧體磁珠。如下面兩個磁珠所示,對于6 A磁珠,流過磁珠的電流是額定電流的20%時候,電感的感值下降了30%。對于3A磁珠,流過磁珠的電流是額定電流的20%時候,電感的感值下降了15%。
鐵氧體磁珠的額定電流(rated current)是設(shè)備在某一特定溫升下所能承受的最大電流的指示,它不是用于實際工作濾波的實際工作點。下圖是Chilisin-UPB321611T-600-N的datasheet,其中明確指出rated current是溫升電流的概念;
此外,可以看到直流偏置電流的影響阻抗值在頻率上的降低,這反過來降低了鐵氧體珠的有效性及其消除電磁干擾的能力。上圖顯示了鐵氧體珠的阻抗隨直流偏置電流的變化。通過僅施加50%的額定電流,TDK MPZ1608S101A (100 ohm, 3A, 0603)有效阻抗在100MHz急劇下降從100 ohm到10 ohm,和WürthElektronik 742 792 510 (70 ohm,6A, 1812),從70 ohm降低到15ohm。
而大多數(shù)磁珠的datasheet中標注的阻抗頻率曲線基本是DC<0.05A左右的情況下測試的,所以對于實際應(yīng)用需要和磁珠的生產(chǎn)廠商詳細咨詢。要不然磁珠起到不到濾除noise的效果,最后花了錢沒有實現(xiàn)很好的效果。關(guān)于這個datasheet中阻抗頻率曲線是如何測量的,和磁珠廠商有溝通,他們也說是小電流情況測試的。
為了更加適合產(chǎn)品的應(yīng)用,讓磁珠廠商測試了各種直流電流下的阻抗頻率曲線,得到的結(jié)果和上面的分析是一樣額:
因此,電路設(shè)計中,在應(yīng)用磁珠的時候需要意識到直流偏置電流對磁珠電感和有效阻抗的影響,因為在大功率的電壓的應(yīng)用中是十分重要的。
4.LC諧振的影響
由于磁珠的電感特性,和電容組合引用的時候會產(chǎn)生LC諧振的影響。此時LC電路沒有起到濾波的效果,反而放大波紋和噪聲,而不是衰減它。由鐵氧體磁珠電感和高Q去耦電容組成的低通濾波網(wǎng)絡(luò)的諧振頻率低于磁珠的交叉頻率時出現(xiàn)峰值,產(chǎn)生的濾波器是欠阻尼的。下圖可以看到為TDK MPZ1608S101A測得的阻抗與頻率圖。電阻元件依賴于耗散多余的能量,直到達到約20 MHz至30 MHz范圍才變得重要。在這個頻率以下,鐵氧體珠仍然有一個非常高的Q值,并像一個理想的電感器。典型的磁珠濾波器的LC諧振頻率通常在0.1MHz到10 MHz范圍內(nèi)。對于典型的開關(guān)頻率300 kHz至5 MHz范圍內(nèi),需要額外的阻尼來降低濾波器Q。
在許多情況下,這種諧振峰值多發(fā)生在dc-to-dc開關(guān)變換器的開關(guān)頻率附近。為了消除這種諧振峰值,需要增加damping電路來消除,常用的damping電路有以下三種:
方法A是在去耦電容路徑上增加一個串聯(lián)電阻,抑制系統(tǒng)的諧振,但在高頻時會降低旁路效率。在這里稍微做一個展開的,這種damping電路和PWM開關(guān)節(jié)點的snuber電路是不同的,雖然都是RC電路,但實現(xiàn)的目的是不一樣的。下圖的snubber電路是吸收PWM開關(guān)節(jié)點的overshoot電壓,防止擊穿下mos管。damping電路是改變Q值,降低諧振峰值。
關(guān)于snubber電路,需要靠近芯片進行l(wèi)ayout,否則不僅不起作用,反而會帶來副作用。下圖是snubber電路的layout參考。
關(guān)于damping電路,靠近磁珠進行l(wèi)ayout設(shè)計,減小環(huán)路。
方法B包括在鐵氧體珠上增加一個小的并聯(lián)電阻,這也可以抑制系統(tǒng)的諧振。在高頻率。下圖顯示了MPZ1608S101A有10ohm并聯(lián)電阻和沒有10ohm并聯(lián)電阻時的阻抗與頻率曲線。淺綠色的虛線曲線是磁珠并聯(lián)10ohm電阻的整體阻抗。磁珠和電阻組合的阻抗顯著降低,并由10ohm電阻控制。然而,帶有10ohm并聯(lián)電阻和磁珠的組合在3.8 MHz交叉頻率遠低于磁珠自身40.3 MHz的交叉頻率。磁珠在更低的頻率范圍出現(xiàn)電阻性,降低了Q以改善阻尼性能。
方法C是將一個大電容(CDAMP)與一個串聯(lián)阻尼電阻(RDAMP)相加,使用電解電容,利用其ESR大的特點,替代串聯(lián)的電阻。這通常是一種最優(yōu)解決方案;這三種電路以及不使用dapming電路的,頻率響應(yīng)曲線如下,不使用dapming電路的Q值最大,產(chǎn)生的諧振峰值也是最大的。
以下以以帶有磁珠濾波器的ADP5071應(yīng)用電路為例,下圖顯示了正輸出端的頻譜圖。開關(guān)頻率設(shè)置為2.4 MHz,輸入電壓為9v,輸出電壓設(shè)置為16v,負載電流5ma。由于磁珠子和10nf陶瓷電容的諧振,共振峰值出現(xiàn)在2.5 MHz左右。不是衰減2.4 MHz的基本紋波頻率,而是產(chǎn)生10 dB的增益。
而下圖是采用方法C阻尼的ADP5071正輸出譜圖。CDAMP和RDAMP分別是1 μF陶瓷電容和2ohm SMD電阻。2.4 MHz時的基波紋波降低了5 dB。
5.小結(jié)
當直流偏置電流大于額定電流的20%時,磁珠電感會顯著下降。這樣的電流也會降低磁珠的有效阻抗,降低其EMI濾波能力。在具有直流偏置電流的供電軌中使用鐵氧體微珠時,要保證電流不會引起鐵氧體材料飽和,并產(chǎn)生顯著的電感變化。
因為鐵氧體珠是感應(yīng)的,不建議用它與高Q去耦電容器。這樣做會在電路中產(chǎn)生不必要的共振,弊大于利。然而,常用的阻尼方法提供了一個簡單的解決方案,通過在負載上使用一個大的去耦電容與阻尼電阻串聯(lián),從而避免不必要的共振。正確地應(yīng)用鐵氧體珠是一種降低高頻噪聲和開關(guān)瞬變的有效而廉價的方法。
本文系21ic論壇網(wǎng)友kk的回憶原創(chuàng)