開關(guān)電源基于補償原理的無源共模干擾抑制技術(shù)
摘要:介紹了一種基于補償原理的共模干擾抑制技術(shù),通過抑制電源輻射來減少變換器的共模干擾。這種方法被推廣應(yīng)用于多種功率變換器拓?fù)?,理論和實驗結(jié)果都表明該技術(shù)有效減少了電路的共模干擾。 關(guān)鍵詞:開關(guān)電源;共模干擾;抑制技術(shù) 引言 由于MOSFET及IGBT和軟開關(guān)技術(shù)在電力電子電路中的廣泛應(yīng)用,使得功率變換器的開關(guān)頻率越來越高,結(jié)構(gòu)更加緊湊,但亦帶來許多問題,如寄生元件產(chǎn)生的影響加劇,電磁輻射加劇等,所以EMI問題是目前電力電子界關(guān)注的主要問題之一。 1 補償原理 共模噪聲與差模噪聲產(chǎn)生的內(nèi)部機制有所不同:差模噪聲主要由開關(guān)變換器的脈動電流引起;共模噪聲則主要由較高的dv/dt與雜散參數(shù)間相互作用而產(chǎn)生的高頻振蕩引起。如圖1所示。共模電流包含連線到接地面的位移電流,同時,由于開關(guān)器件端子上的dv/dt是最大的,所以開關(guān)器件與散熱片之間的雜散電容也將產(chǎn)生共模電流。圖2給出了這種新型共模噪聲抑制電路所依據(jù)的本質(zhì)概念。開關(guān)器件的dv/dt通過外殼和散熱片之間的寄生電容對地形成噪聲電流。抑制電路通過檢測器件的dv/dt,并把它反相,然后加到一個補償電容上面,從而形成補償電流對噪聲電流的抵消。即補償電流與噪聲電流等幅但相位相差180°,并且也流入接地層。根據(jù)基爾霍夫電流定律,這兩股電流在接地點匯流為零,于是50Ω的阻抗平衡網(wǎng)絡(luò)(LISN)電阻(接測量接收機的BNC端口)上的共模噪聲電壓被大大減弱了。 本文以單端反激電路為例,介紹基于補償原理的共模干擾抑制技術(shù)在功率變換器中的應(yīng)用。圖3給出了典型單端反激變換器的拓?fù)浣Y(jié)構(gòu),并加入了新的共模噪聲抑制電路。如圖3所示,從開關(guān)器件過來的dv/dt所導(dǎo)致的寄生電流ipara注入接地層,附加抑制電路產(chǎn)生的反相噪聲補償電流icomp也同時注入接地層。理想的狀況就是這兩股電流相加為零,從而大大減少了流向LISN電阻的共模電流。利用現(xiàn)有電路中的電源變壓器磁芯,在原繞組結(jié)構(gòu)上再增加一個附加繞組NC。由于該繞組只需流過由補償電容Ccomp產(chǎn)生的反向噪聲電流,所以它的線徑相對原副方的NP及NS繞組顯得很小(由實際裝置的設(shè)計考慮決定)。附加電路中的補償電容Ccomp主要是用來產(chǎn)生和由寄生電容Cpara引起的寄生噪聲電流反相的補償電流。Ccomp的大小由Cpara和繞組匝比NP∶NC決定。如果NP∶NC=1,則Ccomp的電容值取得和Cpara相當(dāng);若NP∶NC≠1,則Ccomp的取值要滿足icomp=Cpara·dv/dt。 此外,還可以通過改造諸如Buck,Half-bridge等DC/DC變換器中的電感或變壓器,從而形成無源補償電路,實現(xiàn)噪聲的抑制,如圖4,圖5所示。 3 實驗及結(jié)果 實驗采用了一臺5kW/50Hz艇用逆變器的單端反激輔助電源作為實驗平臺。交流調(diào)壓器的輸出經(jīng)過LISN送入整流橋,整流后的直流輸出作為反激電路的輸入。多點測得開關(guān)管集電極對實驗地(機殼)的寄生電容大約為80pF,鑒于實驗室現(xiàn)有的電容元件,取用了一個100pF,耐壓1kV的瓷片電容作為補償電容。一接地鋁板作為實驗桌面,LISN及待測反激電源的外殼均良好接地。圖6是補償繞組電壓和原方繞組電壓波形。補償繞組精確的反相重現(xiàn)了原方繞組的波形。圖7是流過補償電容的電流和開關(guān)管散熱器對地寄生電流的波形。從圖7可以看出,補償電流和寄生電流波形相位相差180°,在一些波形尖刺方面也較好地吻合。但是,由于開關(guān)管的金屬外殼為集電極且與散熱器相通,散熱器形狀的不規(guī)則導(dǎo)致了開關(guān)管寄生電容測量的不確定性。由圖7可見,補償電流的幅值大于實際寄生電流,說明補償電容的取值與寄生電容的逼近程度不夠好,取值略偏大。圖8給出了補償電路加入前后,流入LISN接地線的共模電流波形比較。經(jīng)過共模抑制電路的電流平衡后,共模電流的尖峰得到了很好的抑制,實驗數(shù)據(jù)表明,最大的抑制量大約有14mA左右。 4 此技術(shù)的局限性 圖10中的(a),(b),(c),(d)給出了噪聲抑制電路無法起到正常效用時的電壓、電流的波形仿真情況。這里主要包含了兩種情況: 另外一種嚴(yán)重的情況是補償變壓器的漏感。當(dāng)把變壓器漏感從原來磁化電感的0.1%增大到10%的時候,補償電路也開始失效,如圖10(c)及圖10(d)所示。補償繞組電壓波形由于漏感和磁化電感的緣故發(fā)生分叉。如果漏感相對于磁化電感來說很小的話,這個波形畸變可以忽略,但實際補償電容上呈現(xiàn)的dv/dt波形已經(jīng)惡化,以至于補償電路無法有效發(fā)揮抑制作用。 由以上的實驗和分析可以看到,應(yīng)用到傳統(tǒng)電源變換器拓?fù)浣Y(jié)構(gòu)中的這種無源CM噪聲抑制電路是有一定作用的。由于用來補償?shù)母郊永@組只須加到現(xiàn)有的變壓器結(jié)構(gòu)中,所以,隔離式的拓?fù)浣Y(jié)構(gòu)對于采用這種無源補償消除電路來說可能是最簡易、經(jīng)濟的電路結(jié)構(gòu)。 |