電源內(nèi)阻:扼殺DC-DC轉(zhuǎn)換效率的元兇
掃描二維碼
隨時隨地手機(jī)看文章
摘要:DC-DC轉(zhuǎn)換器常用于采用電池供電的便攜式及其它高效系統(tǒng),在對電源電壓進(jìn)行升壓、降壓或反相時,其效率高于95%。電源內(nèi)阻是限制效率的一個重要因素。本文描述了電源內(nèi)阻的對效率的影響、介紹了如何計(jì)算效率、實(shí)際應(yīng)用中需要注意的事項(xiàng)、設(shè)計(jì)注意事項(xiàng)、并給出了一個實(shí)際應(yīng)用示例。
DC-DC轉(zhuǎn)換器非常普遍地應(yīng)用于電池供電設(shè)備或其它要求省電的應(yīng)用中。類似于線性穩(wěn)壓器,DC-DC轉(zhuǎn)換器能夠產(chǎn)生一個更低的穩(wěn)定電壓。然而,與線性穩(wěn)壓器不同的是,DC-DC轉(zhuǎn)換器還能夠提升輸入電壓或?qū)⑵浞聪嘀烈粋€負(fù)電壓。還有另外一個好處,DC-DC轉(zhuǎn)換器能夠在優(yōu)化條件下給出超過95%的轉(zhuǎn)換效率。但是,該效率受限于耗能元件,一個主要因素就是電源內(nèi)阻。
電源內(nèi)阻引起的能耗會使效率降低10%或更多,這還不包括DC-DC轉(zhuǎn)換器的損失!如果轉(zhuǎn)換器具有足夠的輸入電壓,輸出將很正常,并且沒有明顯的跡象表明有功率被浪費(fèi)掉。
幸好,測量輸入效率是很簡單的事情(參見電源部分)。
較大的電源內(nèi)阻還會產(chǎn)生其它一些不太明顯的效果。極端情況下,轉(zhuǎn)換器輸入會進(jìn)入雙穩(wěn)態(tài),或者,輸出在最大負(fù)載下會跌落下來。雙穩(wěn)態(tài)意指轉(zhuǎn)換器表現(xiàn)出兩種穩(wěn)定的輸入狀態(tài),兩種狀態(tài)分別具有各自不同的效率。轉(zhuǎn)換器輸出仍然正常,但系統(tǒng)效率可能會有天壤之別(參見如何避免雙穩(wěn)態(tài))。
只是簡單地降低電源內(nèi)阻就可以解決問題嗎?不然,因?yàn)槭軐?shí)際條件所限,以及對成本/收益的折衷考慮,系統(tǒng)可能要求另外的方案。例如,合理選擇輸入電源電壓能夠明顯降低對于電源內(nèi)阻的要求。對于DC-DC轉(zhuǎn)換器來講,更高的輸入電壓限制了對輸入電流的要求,同時也降低了對電源內(nèi)阻的要求。從總體觀點(diǎn)講,5V至2.5V的轉(zhuǎn)換,可能會比3.3V至2.5V的轉(zhuǎn)換效率高得多。必須對各種選擇進(jìn)行評價(jià)。本文的目標(biāo)就是提供一種分析的和直觀的方法,來簡化這種評價(jià)任務(wù)。
如圖1所示,任何常規(guī)的功率分配系統(tǒng)都可劃分為三個基本組成部分:電源、調(diào)節(jié)器(在此情況下為DC-DC轉(zhuǎn)換器)和負(fù)載。電源可以是一組電池或一個穩(wěn)壓或未經(jīng)穩(wěn)壓的直流電源。不幸的是,還有各種各樣的耗能元件位于直流輸出和負(fù)載之間,成為電源的組成部分:電壓源輸出阻抗、導(dǎo)線電阻以及接觸電阻、PCB焊盤、串聯(lián)濾波器、串聯(lián)開關(guān)、熱插拔電路等的電阻。這些因素會嚴(yán)重影響系統(tǒng)效率。
圖1. 三個基本部分組成的標(biāo)準(zhǔn)功率分配系統(tǒng)
計(jì)算和測量電源效率非常簡單。EFFSOURCE = (送入調(diào)節(jié)器的功率)/(VPS輸出功率) x 100%:
假設(shè)調(diào)節(jié)器在無負(fù)載時的吸取電流可以忽略,電源效率就可以根據(jù)調(diào)節(jié)器在滿負(fù)載時的VIN,與調(diào)節(jié)器空載時的VIN之比計(jì)算得出。
調(diào)節(jié)器(DC-DC轉(zhuǎn)換器)由控制IC和相關(guān)的分立元件組成。其特性在制造商提供的數(shù)據(jù)資料中有詳細(xì)描述。DC-DC轉(zhuǎn)換器的效率EFFDCDC = (轉(zhuǎn)換器輸出功率)/(轉(zhuǎn)換器輸入功率) x 100%:
正如制造商所說明的,該效率是輸入電壓、輸出電壓和輸出負(fù)載電流的函數(shù)。許多情況下,負(fù)載電流的變化量超出兩個數(shù)量級時,效率的變化不超出幾個百分點(diǎn)。因?yàn)檩敵鲭妷汗潭ú蛔?,也可以說,在超過兩個數(shù)量級的“輸出功率范圍”內(nèi),效率僅變化幾個百分點(diǎn)。
當(dāng)輸入電壓最接近輸出電壓時,DC-DC轉(zhuǎn)換器具有最高的效率。如果輸入的改變還沒有達(dá)到數(shù)據(jù)資料所規(guī)定的極端情況,那么,轉(zhuǎn)換器的效率常??梢越茷?5%至95%之間的一個常數(shù):
本文的討論中,將DC-DC轉(zhuǎn)換器看作為一個雙端口黑匣子。如對DC-DC轉(zhuǎn)換器的設(shè)計(jì)細(xì)節(jié)感興趣,可查閱參考文獻(xiàn)1–3。負(fù)載包括需要驅(qū)動的設(shè)備和所有與其相連的耗能元件,例如PC板線條電阻、接觸電阻、電纜電阻等等。因?yàn)镈C-DC轉(zhuǎn)換器的輸出電阻已包含在制造商提供的數(shù)據(jù)資料中,故在此不再贅述。負(fù)載效率EFFLOAD = (送入負(fù)載的功率)/(DC-DC轉(zhuǎn)換器的輸出功率) x 100%:
優(yōu)化系統(tǒng)設(shè)計(jì)的關(guān)鍵在于分析并理解DC-DC轉(zhuǎn)換器與其電源之間的相互作用。為此,我們首先定義一個理想的轉(zhuǎn)換器,然后,計(jì)算電源效率,接下來,基于對典型的DC-DC轉(zhuǎn)換器(在此以MAX1626降壓調(diào)節(jié)器為例)的測試數(shù)據(jù),對我們的假設(shè)進(jìn)行驗(yàn)證。
一個理想的DC-DC轉(zhuǎn)換器具有100%的效率,工作于任意的輸入和輸出電壓范圍,并可向負(fù)載提供任意的電流。它也可以任意小,并可隨意獲得。在本分析中,我們只假設(shè)轉(zhuǎn)換器的效率恒定不變,這樣輸入功率正比于輸出功率:
對于給定負(fù)載,該式說明輸入電流-電壓(I-V)間的關(guān)系是一條雙曲線,并在整個范圍內(nèi)表現(xiàn)出負(fù)的微分電阻特性(圖2)。該圖還給出了DC-DC轉(zhuǎn)換器的I-V曲線隨著輸入功率的增加而發(fā)生的變化。對于具有動態(tài)負(fù)載的實(shí)際系統(tǒng),這些曲線也是動態(tài)變化的。也就是說,當(dāng)負(fù)載要求更多電流時,功率曲線會發(fā)生移動并遠(yuǎn)離初始位置。從輸入端口,而非輸出端口,考察一個調(diào)節(jié)器,是一個新穎的視點(diǎn)。畢竟,設(shè)計(jì)調(diào)節(jié)器的目的是為了提供一個恒定的電壓(有時是恒定電流)輸出。其參數(shù)主要是用來描述輸出特性(輸出電壓范圍、輸出電流范圍、輸出紋波、瞬態(tài)響應(yīng)等等)。而在輸入端口,會表現(xiàn)出一些奇特的特性:在其工作范圍內(nèi),它象一個恒功率負(fù)載(參考文獻(xiàn)4) 。恒功率負(fù)載在電池測量儀或其它一些設(shè)計(jì)中非常有用。
圖2. 這些雙曲線代表DC-DC轉(zhuǎn)換器的恒功率輸入特性
現(xiàn)在,我們有了足夠的信息來計(jì)算電源自身的耗散功率及其效率。因?yàn)殡娫措妷旱拈_路值(VPS)已經(jīng)給出,我們僅需找出DC-DC轉(zhuǎn)換器的輸入電壓(VIN)。從等式[5]解出IIN:
IIN還可以根據(jù)VPS、VIN和RS求出:
聯(lián)合等式[6]和等式[7]可以解出VIN:
為便于理解其意義,采用圖形表示等式[6]和等式[7]是非常直觀的(圖3)。電阻負(fù)載線代表等式[7]的所有可能解,而DC-DC I-V曲線則是等式[6]的所有可能解。它們的交點(diǎn)就代表聯(lián)立方程的解,確定了在DC-DC轉(zhuǎn)換器輸入端的穩(wěn)定電壓和電流。因?yàn)镈C-DC曲線代表恒定的輸入功率,(VIN+)(IIN+) = (VIN-) (IIN-)。(下標(biāo)“+”和“-”表示式[8]給出的兩個解,并對應(yīng)于分子中的±符號。)
圖3. 該圖在DC-DC轉(zhuǎn)換器的I-V曲線上附加了一條和電源內(nèi)阻有關(guān)的負(fù)載線
最佳工作點(diǎn)位于VIN+/IIN+,工作于該點(diǎn)時從電源吸取的電流最低,也就使IIN2RS損耗最小。而在其它工作點(diǎn),VPS和VIN之間的所有耗能元件上會產(chǎn)生比較大的功率損耗。系統(tǒng)效率會明顯地下降。不過可以通過降低RS來避免這個問題。電源效率[(VIN/VPS) x 100%] 只需簡單地用VPS去除等式[8]得到:
從該方程很容易得到能量損耗,并且圖3分析曲線中的有關(guān)參數(shù)也可以從中得到。舉例來說,如果串聯(lián)電阻(RS)等于零,電阻負(fù)載線的斜率將會變?yōu)闊o窮大。那么負(fù)載線就成為一條通過VPS的垂直線。在此情況下,VIN+ = VPS,效率為100%。隨著RS從0Ω增加,負(fù)載線繼續(xù)通過VPS,但越來越向左側(cè)傾斜。同時,VIN+和VIN-匯聚于VPS/2,這也是50%效率點(diǎn)。當(dāng)負(fù)載線相切于I-V曲線時,方程[8]只有一個解。對于更大的RS,方程沒有實(shí)數(shù)解,DC-DC轉(zhuǎn)換器將無法正常工作。
如何比較上述理想輸入曲線和一個實(shí)際的DC-DC轉(zhuǎn)換器的真實(shí)情況?為解答這個問題,我們對一個標(biāo)準(zhǔn)的MAX1626評估組件(圖4)進(jìn)行測試,它被配置為3.3V輸出,輸出端接一個6.6Ω的負(fù)載電阻,測試其輸入I-V曲線(圖5)。立即可以發(fā)現(xiàn)一些明顯的非理想特性。例如,對于非常低的輸入電壓,輸入電流是零。內(nèi)置的欠壓鎖定(表示為VL)保證DC-DC轉(zhuǎn)換器對于所有低于VL的輸入電壓保持關(guān)斷,否則,在啟動階段會從電源吸出很大的輸入電流。
圖4. 用以表達(dá)圖3思想的標(biāo)準(zhǔn)DC-DC轉(zhuǎn)換電路[!--empirenews.page--]
圖5. 在VMIN以上,MAX1626的輸入I-V特性非常接近于90%效率的理想器件
當(dāng)VIN超過VL時,輸入電流向最大值攀升,并在VOUT首次到達(dá)預(yù)定輸出電壓(3.3V)時達(dá)到最大。相應(yīng)的輸入電壓(VMIN)是DC-DC轉(zhuǎn)換器產(chǎn)生預(yù)定輸出電壓所需的最低值。當(dāng)VIN > VMIN時,90%效率的恒功率曲線非常接近于MAX1626的輸入曲線。與理想曲線的偏離,主要是由于DC-DC轉(zhuǎn)換器的效率隨輸入電壓的變化發(fā)生了微小改變。
電源設(shè)計(jì)者必須保證DC-DC轉(zhuǎn)換器永遠(yuǎn)不進(jìn)入雙穩(wěn)態(tài)。當(dāng)系統(tǒng)的負(fù)載線與DC-DC轉(zhuǎn)換器曲線的交點(diǎn)位于或低于VMIN/IMAX (圖6)時就有可能形成雙穩(wěn)態(tài)。
圖6. 從該圖可以更為清楚地觀察到造成雙穩(wěn)態(tài)甚至三穩(wěn)態(tài)的相交點(diǎn)
取決于負(fù)載線的斜率和位置,一個系統(tǒng)可能會有兩個甚至三個穩(wěn)態(tài)。應(yīng)該注意的是,較低的VPS可能會使負(fù)載線只有一個位于VL和VMIN間的單一交點(diǎn),導(dǎo)致系統(tǒng)處于穩(wěn)態(tài),但卻不能正常工作!因此,作為一個規(guī)則,負(fù)載線一定不能接觸到DC-DC轉(zhuǎn)換器曲線的頂端,而且不能移到它的下方。
在圖6中,負(fù)載線電阻(RS,數(shù)值等于-1/斜率) 有一個上限,稱為RBISTABLE:
電源內(nèi)阻(RS)應(yīng)該始終小于RBISTABLE。否則的話,就有嚴(yán)重降低工作效率或使DC-DC轉(zhuǎn)換器完全停止工作的危險(xiǎn)。
對于一個實(shí)際系統(tǒng),將[9]式所表示的電源效率及其內(nèi)阻之間的關(guān)系,用圖形表示出來會更有助于理解(圖7) 。假設(shè)有下列條件:
圖7. 該電源效率隨電源內(nèi)阻變化曲線說明,對于一個給定的RS值,可能會有多個效率值
VPS = 10V 開路電源電壓
VMIN = 2V 保證正常工作所需的最小輸入電壓
PIN = 50W 輸入DC-DC轉(zhuǎn)換器的功率(POUT/EFFDCDC)
利用[12]式,可計(jì)算出RBISTABLE為0.320Ω。方程[9]的圖形表明,電源效率隨著RS的增加而跌落,在RS = RBISTABLE時跌落達(dá)20%。注意:該結(jié)論并不具有普遍性,對于每個應(yīng)用,必須分別進(jìn)行計(jì)算。RS的來源之一,是所有電源無法避免的、有限的輸出電阻,它可通過負(fù)載調(diào)整來確定,后者通常定義為:
負(fù)載調(diào)整 =
所以,
一個具有1%負(fù)載調(diào)整的5V/10A電源,輸出電阻僅5.0mΩ—對于10A負(fù)載還不算大。
搞清楚多大的電源內(nèi)阻(RS)可以接受,以及該項(xiàng)參數(shù)對于系統(tǒng)效率有什么樣的影響,是很有必要的。前面已經(jīng)提到,RS必須低于RBISTABLE,但是,究竟應(yīng)該低多少?要回答這個問題,可以根據(jù)[9]式,解出RS和EFFSOURCE的關(guān)系,并分別求出EFFSOURCE為95%、90%和85%時的對應(yīng)值。RS95是在給定的輸入輸出條件下,95%電源效率所對應(yīng)的RS??紤]以下四個采用普通DC-DC轉(zhuǎn)換器的應(yīng)用實(shí)例。
實(shí)例1:從5V輸入提供3.3V 輸出,負(fù)載電流2A 。對于95%的電源效率,需要特別注意的是,保持5V電源和DC-DC轉(zhuǎn)換器輸入端之間的電阻遠(yuǎn)低于162mΩ。注意到RS90 = RBISTABLE。這樣的RS90值同時說明,效率會同樣容易地從90%變?yōu)?0%!需要注意的是,系統(tǒng)效率(而非電源效率)是電源效率、DC-DC轉(zhuǎn)換器效率和負(fù)載效率三者的乘積。
實(shí)例1. 采用MAX797或MAX1653 DC-DC轉(zhuǎn)換器的應(yīng)用(IOUT = 2A)
VPS | VOUT | IOUT | VMIN | EFFDCDC | POUT | RBISTABLE | RS95 | RS90 | RS85 |
5V | 3.3V | 2A | 4.5V | 90% | 6.6W | 0.307Ω | 0.162Ω | 0.307Ω | 0.435Ω |
實(shí)例2. 采用MAX797或MAX1653 DC-DC轉(zhuǎn)換器的應(yīng)用(IOUT = 20A)
VPS | VOUT | IOUT | VMIN | EFFDCDC | POUT | RBISTABLE | RS95 | RS90 | RS85 |
5V | 3.3V | 20A | 4.5V | 90% | 66W | 0.031Ω | 0.016Ω | 0.031Ω | 0.043Ω |
實(shí)例3:從4.5V的電源電壓(即5V-10%),以5A電流提供1.6V輸出。系統(tǒng)要求111mΩ的RS95,可以達(dá)到,但不容易。
實(shí)例3. 有獨(dú)立+5V電源的MAX1710 DC-DC轉(zhuǎn)換器應(yīng)用(VPS = 4.5V)
VPS | VOUT | IOUT | VMIN | EFFDCDC | POUT | RBISTABLE | RS95 | RS90 | RS85 |
4.5V | 1.6V | 5A | 2.5V | 92% | 8W | 0.575Ω | 0.111Ω | 0.210Ω | 0.297Ω |
實(shí)例4:與實(shí)例3相同,但具有更高的電源電壓(VPS = 15V,而非4.5V)。請注意一個很有用的折衷: 大幅度增加輸入、輸出之間的電壓差,會造成DC-DC轉(zhuǎn)換器效率單方面的降低,但系統(tǒng)的總體效率得到了改善。RS不再是問題,因?yàn)楸容^大的RS95值(>1Ω)很容易滿足。例如,一個帶有輸入濾波器和長輸入線的系統(tǒng),不需要特別考慮線寬和接插件電阻,就能很容易保證95%的電源效率。
實(shí)例4. 有獨(dú)立+5V電源的MAX1710 DC-DC轉(zhuǎn)換器應(yīng)用(VPS = 15V)
VPS | VOUT | IOUT | VMIN | EFFDCDC | POUT | RBISTABLE | RS95 | RS90 | RS85 |
15V | 1.6V | 5A | 2.5V | 86% | 8W | 3.359Ω | 1.149Ω | 2.177Ω | 3.084Ω |
在查閱DC-DC轉(zhuǎn)換器的特性參數(shù)時,常傾向于將電源電壓設(shè)定在盡量接近輸出電壓的值,以便獲得最高的轉(zhuǎn)換效率。然而,這種策略對于其他一些元件,例如導(dǎo)線、連接器和走線布局等,提出了一些不必要的限制條件,并導(dǎo)致了成本的增加。而系統(tǒng)效率還是受到損害。本文所提供的分析方法,使得這種對于電源系統(tǒng)的折衷考慮更加直觀和顯而易見。