當(dāng)前位置:首頁 > 電源 > 電源
[導(dǎo)讀]在重視熱耗散和效率的場合中,人們會(huì)用開關(guān)穩(wěn)壓器替代線性穩(wěn)壓器。開關(guān)穩(wěn)壓器通常是輸入電源總線線路上的首個(gè)有源組件,因此對于整個(gè)轉(zhuǎn)換器電路的 EMI 性能具有重大的影響

在重視熱耗散和效率的場合中,人們會(huì)用開關(guān)穩(wěn)壓器替代線性穩(wěn)壓器。開關(guān)穩(wěn)壓器通常是輸入電源總線線路上的首個(gè)有源組件,因此對于整個(gè)轉(zhuǎn)換器電路的 EMI 性能具有重大的影響。

相比于通孔元件,表面貼裝技術(shù)中的新式輸入濾波器組件擁有更好的性能。然而,這種改進(jìn)趕不上開關(guān)穩(wěn)壓器工作開關(guān)頻率增加的步伐。由于開關(guān)切換速度較快的原因,較高的效率、低的最小導(dǎo)通和關(guān)斷時(shí)間產(chǎn)生了較高的諧波含量。

在所有其他參數(shù) (例如:開關(guān)電容和轉(zhuǎn)換時(shí)間) 保持恒定的情況下,開關(guān)頻率每增加一倍將使 EMI 性能下降 6dB。如果開關(guān)頻率增加 10 倍,則寬帶 EMI 的作用就像一個(gè)輻射增加了 20dB 的一階高通濾波器。

懂行的 PCB 設(shè)計(jì)師將使熱回路很小,并采用盡可能靠近有源層的屏蔽 GND 層;不過,引出腳配置、封裝構(gòu)造、熱設(shè)計(jì)要求以及在去耦組件中實(shí)現(xiàn)足夠能量存儲(chǔ)所需的封裝尺寸限定了熱回路的最小尺寸。

對布局而言更為棘手的是,在典型的平面型印刷電路板上,高于 30MHz 的走線間磁性耦合或變壓器型耦合將使得濾波器設(shè)計(jì)方面的所有努力大打折扣,因?yàn)橹C波頻率越高,有害磁性耦合的作用就越明顯。

經(jīng)過檢驗(yàn)而可靠的解決方案是為整個(gè)電路采用一個(gè)屏蔽盒。當(dāng)然,這么做將增加成本和所需的電路板空間、使熱管理和測試更加困難、并帶來額外的裝配成本。另一種常用的方法是減緩開關(guān)邊緣速率。這種做法的不利之處是會(huì)降低效率、增加最小導(dǎo)通 / 關(guān)斷時(shí)間和所需的死區(qū)時(shí)間、以及犧牲潛在的電流控制環(huán)路速度。

借助凌力爾特的新型 LT8614 Silent Switcher™ 穩(wěn)壓器,既可以獲得與屏蔽盒相同的作用,又不必使用屏蔽盒,同時(shí)還能消除上述的缺陷。見圖 1。

 

圖 1:LTC8614 Silent Switcher 可最大限度地抑制 EMI / EMC,并在高達(dá) 3MHz 的頻率條件下提供高效率。

LT8614 具有 LT861x 系列中世界級的低 IQ,工作電流僅為 2.5µA。這是該器件在調(diào)節(jié)狀態(tài)和無負(fù)載條件下的總電源電流消耗。

LT8614 具有與該系列相同的超低壓差,其僅受限于內(nèi)部頂端開關(guān)。與其他替代型解決方案不同,LT8614 的 RDSON 并不受限于最大占空比和最小關(guān)斷時(shí)間。在壓差條件下,該器件將跳過其關(guān)斷周期并僅執(zhí)行必需的最少斷開周期,以使內(nèi)部頂端開關(guān)升壓級電壓得以保持,如圖 6 所示。

與此同時(shí),最小工作輸入電壓的典型值為 2.9V (最大值為 3.4V),而且該器件能在其處于壓差狀態(tài)時(shí)提供一個(gè) 3.3V 電壓軌。在高電流時(shí),LT8614 因其總開關(guān)電阻較低而擁有高于 LT8610 / LT8611 的效率。另外,它還可同步至一個(gè)運(yùn)作范圍為 200kHz 至 3MHz 的外部頻率。

由于 AC 開關(guān)損耗很低,因此其可工作于高開關(guān)頻率而不使效率大幅下降。在那些對 EMI 敏感的應(yīng)用中 (比如:汽車環(huán)境) 可獲得一種上佳的平衡,LT8614 的運(yùn)行頻率既可低于 AM 頻段 (以實(shí)現(xiàn)更低的 EMI),也可高于 AM 頻段。在一種采用 700kHz 工作開關(guān)頻率的配置中,標(biāo)準(zhǔn)的 LT8614 演示板在 CISPR25 測量中未超過噪聲層。

圖 2 所示的測量結(jié)果是在 12VIN、3.3VOUT/2A 和 700kHz 固定開關(guān)頻率下于一個(gè)吸波暗室中獲得的。

 

圖 2:藍(lán)色掃跡為噪聲層;紅色掃跡是 LT8614 演示板在一個(gè)吸波暗室中的 CISPR25 輻射測量值。

為了比較 LT8614 Silent Switcher 技術(shù)與當(dāng)今最先進(jìn)的開關(guān)穩(wěn)壓器,我們對該器件和 LT8610 進(jìn)行了對比測量。測試在一個(gè)千兆赫橫電磁波室 (GTEM cell) 中進(jìn)行,在用于這兩款器件的標(biāo)準(zhǔn)演示板上采用了相同的負(fù)載、輸入電壓和相同的電感器。

可見,與 LT8610 已經(jīng)非常優(yōu)越的 EMI 性能相比,采用 LT8614 Silent Switcher 技術(shù)可實(shí)現(xiàn)高達(dá) 20dB 的 EMI 改善幅度,特別是在更難以控制的較高頻段中。這可實(shí)現(xiàn)更加簡單和緊湊的設(shè)計(jì),在此類設(shè)計(jì)中,LT8614 開關(guān)電源所需的濾波和間隔比整體設(shè)計(jì)中的其他敏感系統(tǒng)要少。

在時(shí)域中,LT8614 在開關(guān)節(jié)點(diǎn)邊緣上表現(xiàn)出非常優(yōu)良的工作特性,如圖 4 所示。

即使采用每格為 4ns 的標(biāo)度,LT8614 Silent Switcher 穩(wěn)壓器也顯現(xiàn)出非常低的振鈴 (見圖 3 中的 Ch2)。LT8610 雖然具有優(yōu)良的阻尼振鈴 (圖 3 中的 Ch2),但是與 Ch2 中的 LT8614 相比,可以看到 LT8610 在熱回路中存儲(chǔ)了較高的能量。

 

圖 3:藍(lán)色掃跡是 LT8614,紫色掃跡為 LT8610;兩者均在 13.5VIN、3.3VOUT 和 2.2A 負(fù)載條件下。

 

圖 4:Ch1:LT8610,Ch2:LT8614 開關(guān)節(jié)點(diǎn)上升沿,兩者均在 8.4VIN、3.3VOUT 和 2.2A 負(fù)載條件下。

圖 5 示出了 13.2VIN 條件下的開關(guān)節(jié)點(diǎn)。可見從 LT8614 的理想方波產(chǎn)生了極低的偏差 (示于 Ch2)。圖 3 至圖 5 中的所有時(shí)域測量都采用 500MHz Tektronix P6139A 探頭 (并將探針緊密地屏蔽連接至 PCB GND 平面) 完成,兩者均在標(biāo)準(zhǔn)演示板上。

 

圖 5:3 Ch1:LT8610,Ch2:LT8614,兩者均在 13.2V 輸入、3.3V/2.2A 輸出條件下。

除了其在汽車環(huán)境中的 42V 絕對最大輸入電壓額定值之外,壓差運(yùn)行方式也是非常重要的。通常,關(guān)鍵的 3.3V 邏輯電源必需在整個(gè)冷車發(fā)動(dòng)期間得到支持。在該場合中,LT8614 Silent Switcher 穩(wěn)壓器保持了 LT861x 系列近乎理想的運(yùn)行方式。與替代器件采用較高的欠壓閉鎖電壓和最大占空比箝位不同,LT8610 / LT8611 / LT8614 器件可在低至 3.4V 的電壓下運(yùn)作,并在必要時(shí)盡快地開始跳過斷開周期,如圖 6 所示。這產(chǎn)生了理想的壓差運(yùn)行方式,如圖 7 所示。

 

圖 6:3 Ch1:LT8610,Ch2:LT8614 開關(guān)節(jié)點(diǎn)壓差運(yùn)行方式

 

圖 7:LT8614 壓差運(yùn)行方式

即使在高開關(guān)頻率下,LT8614 很低的最小導(dǎo)通時(shí)間 (30ns) 也能實(shí)現(xiàn)大的降壓比。因此,其通過對高達(dá) 42V 的輸入進(jìn)行單次降壓就能提供邏輯內(nèi)核電壓。

總之,LT8614 Silent Switcher 穩(wěn)壓器可使當(dāng)今先進(jìn)的開關(guān)穩(wěn)壓器之 EMI 下降 20dB 以上,同時(shí)提高轉(zhuǎn)換效率,而且沒有缺點(diǎn)。在高于 30MHz 的頻率范圍中可獲得 10 倍的 EMI 改善幅度,且在電路板面積相同的情況下未犧牲最小導(dǎo)通和關(guān)斷時(shí)間或效率。上述目標(biāo)的實(shí)現(xiàn)并未采用特殊的組件或屏蔽,因而標(biāo)志著開關(guān)穩(wěn)壓器設(shè)計(jì)領(lǐng)域的一項(xiàng)重大突破。迄今為止,利用單個(gè) IC 達(dá)到這種性能水平尚無先例。該器件正是那種可幫助終端系統(tǒng)設(shè)計(jì)師使其產(chǎn)品邁上新臺(tái)階的突破性集成電路。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動(dòng)力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉