IGBT驅(qū)動芯片IXDN404應(yīng)用及改進
關(guān)鍵詞:IGBT;驅(qū)動與保護;IXDN404
引言
絕緣柵晶體管IGBT是近年來發(fā)展最快而且很有前途的一種復(fù)合型器件,并以其綜合性能優(yōu)勢在開關(guān)電源、UPS、逆變器、變頻器、交流伺服系統(tǒng)、DC/DC變換、焊接電源、感應(yīng)加熱裝置、家用電器等領(lǐng)域得到了廣泛應(yīng)用。然而,在其使用過程中,發(fā)現(xiàn)了不少影響其應(yīng)用的問題,其中之一就是IGBT的門極驅(qū)動與保護。目前國內(nèi)使用較多的有富士公司生產(chǎn)的EXB系列,三菱公司生產(chǎn)的M579系列,MOTOROLA公司生產(chǎn)的MC33153等驅(qū)動電路。這些驅(qū)動電路各有特點,均可實現(xiàn)IGBT的驅(qū)動與保護,但也有其應(yīng)用限制,例如:驅(qū)動功率低,延遲時間長,保護電路不完善,應(yīng)用頻率限制等。本文,以IXYS公司生產(chǎn)的IGBT驅(qū)動芯片IXDN404為基礎(chǔ),介紹了其特性和參數(shù),設(shè)計了實際驅(qū)動與保護電路,經(jīng)過實驗驗證,可滿足IGBT的實際驅(qū)動和過流及短路時實施慢關(guān)斷策略的保護要求。
1 IXDN404驅(qū)動芯片簡介
IXDN404為IXYS公司生產(chǎn)的高速CMOS電平IGBT/MOSFET驅(qū)動器,其特性如下:
--高輸出峰值電流可達到4A;
--工作電壓范圍4.5V~25V;
--驅(qū)動電容1800pF<15ns;
--低傳輸延遲時間;
--上升與下降時間匹配;
--輸出高阻抗;
--輸入電流低;
--每片含有兩路驅(qū)動;
--輸入可為TTL或CMOS電平。
其電路原理圖如圖1所示,主要電氣參數(shù)如表1所列。
表1 IXDN404主要電氣參數(shù)
符 號 | 參 數(shù) | 測試條件 | 最小值 | 典型值 | 最大值 | 單位 |
Vih |
輸入門限電壓,邏輯1 |
空 | 3.5 | 空 | 空 | V |
Vil |
輸入門限電壓,邏輯0 |
空 | 空 | 空 | 0.8 | V |
Voh |
輸出電壓,邏輯1 |
空 | Vcc-0.025 | 空 | 空 | V |
Vol |
輸出電壓,邏輯0 |
空 | 空 | 空 | 0.025 | V |
Ipeak |
峰值輸出電流 |
Vcc=18V | 4 | 空 | 空 | A |
Idc |
連續(xù)輸出電流 |
Vce=18V | 空 | 空 | 1 | A |
tr |
上升時間 |
C1=1800pF Vcc=18V | 11 | 12 | 15 | ns |
tf |
下降時間 |
C1=1800pF Vcc=18V | 12 | 14 | 17 | ns |
tond |
上升時間延遲 |
C1=1800pF Vcc=18V | 33 | 34 | 38 | ns |
toffd |
下降時間延遲 |
C1=1800pF Vcc=18V | 28 | 30 | 35 | ns |
Vcc |
供電電壓 |
空 | 4.5 | 18 | 25 | V |
Icc |
供電電流 |
Vin=+Vcc | 空 | 空 | 10 | μA |
2 驅(qū)動芯片應(yīng)用與改進
圖2為IXDN404組成的IGBT實用驅(qū)動與保護電路,該電路可驅(qū)動1200V/100A的IGBT,驅(qū)動電路信號延遲時間不超過150ns,所以開關(guān)頻率圖2由IXDN404組成的IGBT保護與驅(qū)動電路圖1IXDN404電路原理圖可以高達100kHz??蓱?yīng)用于DSP控制的高頻開關(guān)電源、逆變器、變頻器等功率電路中。根據(jù)IXYS公司的使用手冊,IXDN404僅能提供0~+Vcc的驅(qū)動脈沖。我們在此基礎(chǔ)上,增加5.1V穩(wěn)壓二極管Z3以實現(xiàn)-5V偏置電壓;由穩(wěn)壓管電壓為光耦6N137和反相器CD4069供電,節(jié)省了一路驅(qū)動電源;增加降柵壓及慢關(guān)斷保護電路,實現(xiàn)IGBT的保護功能;降柵壓及慢關(guān)斷電路是通過控制IXDN404供電電壓Vcc來實現(xiàn)的,明顯不同于其它保護電路的前級降壓控制方式。下面介紹其工作原理。
2.1 正常開通過程
當控制信號為高電平時,快速光耦6N137導(dǎo)通,經(jīng)過一級反相,輸入IXDN404,輸出+15V脈沖,IGBT正常導(dǎo)通。同時,由于光耦輸出為反相,V4截止,V5導(dǎo)通,C1由電源充電,C1電壓不會超過9V,這是因為IGBT正常導(dǎo)通時Vces不高于3V,二極管D2導(dǎo)通,A點電位箝位在8V,加上電阻R10的壓降,C點電位接近9V。Z1截止,V2截止,V1導(dǎo)通,B點電位接近20V;Z2截止,V3截止,D點電位接近B點電位。C1充電時間常數(shù)τ1=R9×C1=2.42μs,C1充電到9V的時間為
t1=τ1ln[20/(20-19)]=1.45μs (1)
2.2 正常關(guān)斷過程
當控制信號為低電平,光耦輸出高電平,反相輸出低電平,由于Z3箝位IXDN404輸出脈沖為-5V,IGBT正常關(guān)斷。這時,V4導(dǎo)通,V5截止,C點電位保持在9V;Z1截止,V2截止,V1導(dǎo)通,B點電位接近20V;Z2截止,V3截止,D點電位接近B點電位。
圖2
2.3 保護過程
設(shè)IGBT已經(jīng)導(dǎo)通,各點電位如2.1所說。當電路過流時,IGBT因承受大電流而退出電阻區(qū),Vces上升,二極管D2截止,A點對電容C1的箝位作用消失;C點電位從9V上升,同時Z1反向擊穿,V2導(dǎo)通,V1截止,B點電位由R1和Rc以及IXDN404芯片內(nèi)阻分壓決定,箝位在15V,柵壓降為10V。柵壓的下降可有效地抑制故障電流并增加短路允許時間。降柵壓運行時間為
t2=τ1ln(20-0)/(20-13)=1.09μs (2)
如果在這段時間內(nèi),電路恢復(fù)正常,D2導(dǎo)通,A點繼續(xù)箝位,V2截止,V1導(dǎo)通,電路恢復(fù)2.1所說狀態(tài)。如果D2仍處于斷態(tài),也就是故障電流仍然存在,C點電壓繼續(xù)上升,經(jīng)過t2時間上升到13V,Z2反向擊穿,V3導(dǎo)通,電容C2通過電阻R12放電,D點與B點電位同時下降,IGBT柵壓逐漸下降,實現(xiàn)慢關(guān)斷過程,避免了正常關(guān)斷大電流時所引起的過電壓。慢關(guān)斷過程時間為t3,由C2和R12決定。由IXDN404工作電壓范圍為4.5~25V,τ2=R12×C2=4.84μs,可知
t3=τ2ln(15/4.5)=5.83μs (3)
另外,在IGBT開通過程中,如果二極管D2不能及時導(dǎo)通,將造成保護電路的誤動作,因此D2要選擇快速二極管,也可通過適當增加Z1穩(wěn)壓值和增大電阻R9以增大C1充電時間常數(shù)延長保護電路動作時間。但這與保護動作的快速性相矛盾,具體應(yīng)用時要根據(jù)實際電路要求和功率器件的特性作出折中的選擇。
2.4 幾點說明
1)為使驅(qū)動功率達到最大,本電路將兩路輸入輸出并聯(lián)使用,最大驅(qū)動峰值電流可達8A,這個峰值電流是由電容Cc瞬間放電產(chǎn)生;
2)光耦6N137輸出為輸入反相,IXDN404為同相輸入輸出,為保證控制邏輯正確,中間需加一級反相器,也可采用帶反相的IXDI404;
3)圖2中可在E點處加入一個光耦,其輸出可作為短路保護信號送給控制邏輯,以封鎖本路及其它各路的PWM信號,確保主電路安全;
4)IXDN404驅(qū)動電路對脈沖信號非常敏感,實際操作時要保證連線盡量短,輸出要用雙絞線接IGBT,電路所用元器件也可采用貼片式,既縮小驅(qū)動電路體積,也提高了工作穩(wěn)定度。
圖3為實測IGBT的門極驅(qū)動信號,其中通道1為輸入控制信號,通道2為輸出驅(qū)動信號。所用IGBT為仙童公司HGTG18N120BND。從圖中可以看出驅(qū)動電路延遲時間僅為100ns。其中圖3(d)為模擬IGBT過流時的保護波形,首先降柵壓運行,然后慢關(guān)斷,最后由于低電壓供電,IXDN404輸出驅(qū)動電壓封鎖在-2V左右。
3 結(jié)語
由IXDN404組成的IGBT驅(qū)動與保護電路可滿足IGBT驅(qū)動要求,其特點可歸納如下:
--驅(qū)動電源+20V單路供電,驅(qū)動柵壓+15V~-5V;
--最大驅(qū)動峰值電流可達8A,滿足大功率IGBT驅(qū)動要求;
--電路信號延遲時間短,工作頻率可以達到100kHz或者更高,可適應(yīng)大多數(shù)電路需要;
--可實現(xiàn)過流保護及降柵壓慢關(guān)斷功能;
--電路成本相對較低。
綜上所述,這種驅(qū)動保護電路是一種低成本、高性能的IGBT驅(qū)動電路。