利用濕式蝕刻工藝提高LED光萃取效率之產(chǎn)能與良率的方法
近幾年來III族氮化物(III-Nitride)高亮度發(fā)光二極體(High Brightness Light EmissiON Diode; HB-LED)深獲廣大重視,目前廣泛應(yīng)用于交通號(hào)志、LCD背光源及各種照明使用上?;旧?,GaN LED是以磊晶(Epitaxial)方式生長在藍(lán)寶石基板(Sapphire SubSTrate)上,由于磊晶GaN與底部藍(lán)寶石基板的晶格常數(shù)(Lattice Constant)及熱膨脹系數(shù)(Coefficient of Thermo Expansion; CTE)相差極大,所以會(huì)產(chǎn)生高密度線差排(Thread DislocaTIon)達(dá)108~1010 / cm2,此種高密度線差排則會(huì)限制了GaN LED的發(fā)光效率。
此外,在HB-LED結(jié)構(gòu)中,除了主動(dòng)層(Active Region)及其他層會(huì)吸收光之外,另外必須注意的就是半導(dǎo)體的高折射系數(shù)(High Refractive Index),這將使得LED所產(chǎn)生的光受到局限(Trapped Light)。以圖1來進(jìn)行說明,從主動(dòng)區(qū)所發(fā)射的光線在到達(dá)半導(dǎo)體與周圍空氣之界面時(shí),如果光的入射角大于逃逸角錐(Escape Cone)之臨界角(Critical Angle;αc)時(shí),則會(huì)產(chǎn)生全內(nèi)反射(Total Internal Reflection);對(duì)于高折射系數(shù)之半導(dǎo)體而言,其臨界角都非常小,當(dāng)折射系數(shù)為3.3時(shí),其全內(nèi)反射角則只有17o,所以大部份從主動(dòng)區(qū)所發(fā)射的光線,將被局限(Trapped)于半導(dǎo)體內(nèi)部,這種被局限的光有可能會(huì)被較厚的基板所吸收。此外,由于基板之電子與電洞對(duì),會(huì)因基板品質(zhì)不良或效率較低,導(dǎo)致有較大機(jī)率產(chǎn)生非輻射復(fù)回(Recombine Non-RadiativELy),進(jìn)而降低LED效率。所以如何從半導(dǎo)體之主動(dòng)區(qū)萃取光源,以進(jìn)而增加光萃取效率(Light Extraction Efficiency),乃成為各LED制造商最重要的努力目標(biāo)。
目前有兩種方法可增加LED光之萃取效率:(1)第一種方法是在LED磊晶前,進(jìn)行藍(lán)寶石基板的蝕刻圖形化(Pattern Sapphire Substrate; PSS);(2)第二種方法是在LED磊晶后,進(jìn)行藍(lán)寶石基板的側(cè)邊蝕刻(Sapphire Sidewall Etching; SSE),以及基板背面粗糙化(Sapphire Backside Roughing; SBR)。本文將探討如何利用高溫磷酸濕式化學(xué)蝕刻技術(shù),來達(dá)到增加LED光萃取效率之目的。此外,針對(duì)LED生產(chǎn)線之高產(chǎn)能與高良率需求時(shí),在工藝系統(tǒng)設(shè)計(jì)制作上必須考慮到哪些因數(shù),亦將進(jìn)行詳細(xì)探討,以期達(dá)到增加LED光萃取效率之目的。
圖1、從主動(dòng)區(qū)所發(fā)射的光線在到達(dá)半導(dǎo)體與周圍空氣之界面時(shí),如果光的入射角大于臨界角(αc)時(shí),則會(huì)產(chǎn)生全內(nèi)反射。
磊晶前藍(lán)寶石基板之蝕刻圖形化(PPS)工藝
藍(lán)寶石基板蝕刻圖形化(PPS)可以有效增加光的萃取效率,因?yàn)榻逵苫灞砻鎺缀螆D形之變化,可以改變LED的散射機(jī)制,或?qū)⑸⑸涔鈱?dǎo)引至LED內(nèi)部,進(jìn)而由逃逸角錐中穿出。目前使用單步驟無光罩乾式蝕刻技術(shù)(Maskless Dry Etching)來加工藍(lán)寶石(Sapphire)基板,雖然可以改善內(nèi)部量子效率(Internal Quantum Efficiency)和光萃取率(Light Extraction Efficiency),然而由于藍(lán)寶石基板表面非常堅(jiān)硬,乾式蝕刻會(huì)損傷藍(lán)寶石表面,使得線差排(Thread Dislocation)由基板逐漸延伸到頂端的GaN磊晶層,因而影響到LED之磊晶品質(zhì),所以一般都傾向使用濕式化學(xué)蝕刻方式。有關(guān)藍(lán)寶石基板之濕式化學(xué)蝕刻圖形化,以及LED之前段工藝流程,說明如下:
A.首先利用黃光微影工藝在藍(lán)寶石基板上制作出所需的圖案。
B.利用電漿輔助化學(xué)氣相沉積(Plasma Enhanced Chemical Vapor Deposition; PE-CVD)系統(tǒng)在藍(lán)寶石基板上方沉積SiO2,進(jìn)行光組去除后,即可形成間隔3μm的陣列圖案。
C.利用SiO2當(dāng)作蝕刻遮罩層,在溫度280℃的高溫磷酸與硫酸混合液中蝕刻藍(lán)寶石基板,以形成圖案化結(jié)構(gòu)。圖2為使用濕式化學(xué)蝕刻藍(lán)寶石基板(PSS)后之橫截面示意圖;圖3為光學(xué)顯微鏡照片。
D.使用MO-CVD生長GaN-LED于蝕刻圖案化之藍(lán)寶石基板C(0001)面上,GaN-LED結(jié)構(gòu)由下而上,包括:GaN成核層、未摻雜的GaN層、硅摻雜的N-type GaN層、MQW層及P-type GaN層。
E.使用標(biāo)準(zhǔn)微影技術(shù)及乾式蝕刻來蝕刻部份的P-type GaN層,以露出N-type GaN層,進(jìn)而定義發(fā)光區(qū)域及電極。
F.沉積ITO透明導(dǎo)電層,接著沉積Cr/Au金屬層,在200℃氮?dú)鈿夥障逻M(jìn)行合金化,以制作P電極與N電極。圖4為GaN LED之前段工藝流程圖;圖5為經(jīng)過化學(xué)濕式蝕刻圖形化藍(lán)寶石基板(PSS),接著生長GaN磊晶層的LED結(jié)構(gòu)圖。
圖2、濕式化學(xué)蝕刻藍(lán)寶石基板后(PSS)之橫截面示意圖。
圖3、濕式化學(xué)蝕刻藍(lán)寶石基板后(PSS)之光學(xué)顯微鏡照片。
圖4、GaN LED前段工藝流程圖
圖5、濕式蝕刻圖形化藍(lán)寶石基板后,接著生長GaN磊晶層的LED結(jié)構(gòu).
如圖6所示,經(jīng)濕式化學(xué)蝕刻圖形化之藍(lán)寶石基板,基于表面晶格特性,所以會(huì)被蝕刻出呈57o傾斜的{1-102}R面(R Plane),此種傾斜R面可以大大地增加光的萃取效率。Lee等人利用濕式蝕刻圖形化藍(lán)寶石基板制作GaN LED并*估其效能,圖7為傳統(tǒng)LED和PPS LED的電流-輸出光功率曲線之關(guān)系圖,在20mA操作電壓下,傳統(tǒng)LED和PPS LED的輸出功率分別為7.8和9 mW,PPS LED的輸出功率為傳統(tǒng)LED的1.15~1.3倍。此外,在20mA操作電壓下,傳統(tǒng)LED和PPS LED的外部量子效率(External Quantum Efficiency)分別為14.2%和1*%,PPS LED的外部量子效率也較傳統(tǒng)LED高1.15倍。因此PPS技術(shù)不只利用藍(lán)寶石基板的特殊幾何結(jié)構(gòu),將光導(dǎo)引至逃逸角錐(Escape Cone)進(jìn)而發(fā)射出去,以增加LED的外部量子效率外,濕式蝕刻PPS結(jié)構(gòu)也可降低Sapphire基板之差排缺陷密度,以進(jìn)而提高GaN的磊晶品質(zhì)[3, 4, 5].[!--empirenews.page--]
圖6、經(jīng)濕式蝕刻圖形化藍(lán)寶石基板,其表面因晶格特性,會(huì)被蝕刻出成57o傾斜的的{1-102}面(R Plane),可以大大增加光的萃取效率.
圖7、傳統(tǒng)的LED和PPS LED的電流-輸出光功率曲線之關(guān)系圖.
磊晶后藍(lán)寶石基板之蝕刻工藝
元件形狀化之覆晶LED是使用高溫磷酸來蝕刻藍(lán)寶石基板的側(cè)邊(Sapphire Sidewall Etching; SSE),并使基板背面粗糙化(Sapphire Backside Roughing; SBR),以此雙重方式來達(dá)到增加光萃取效果,其詳細(xì)工藝流程如圖8所示。首先在藍(lán)寶石基板上磊晶制作GaN之LED結(jié)構(gòu),再將藍(lán)寶石基板磨薄至200 μm厚度,以利于后續(xù)芯片切割之進(jìn)行,接著分別在元件上下面鍍上二氧化硅(SiO2)當(dāng)作蝕刻保護(hù)層,使用黃光微影工藝來定義藍(lán)寶石基板被蝕刻的開口位置。接著將已設(shè)計(jì)圖案化之藍(lán)寶石基板浸入高溫300℃的磷酸與硫酸的混合液中,進(jìn)行藍(lán)寶石基板之側(cè)邊蝕刻,接者去除二氧化硅保護(hù)層。后續(xù)進(jìn)行透明導(dǎo)電膜(ITO)與金屬電極(Electrode)制作,并用覆晶(Flip Chip)設(shè)備將芯片黏著于硅基板上,制作完成之元件剖面,如圖9所示.
藍(lán)寶石的蝕刻速率與磷酸和硫酸的比例,以及蝕刻液溫度有關(guān),由于蝕刻結(jié)果取決于其晶格結(jié)構(gòu),蝕刻會(huì)沿者藍(lán)寶石的晶格面進(jìn)行,至于藍(lán)寶石基板的背面,因?yàn)槠湓臼且粋€(gè)粗糙面,所以無法在其表面鍍上一層均勻的二氧化硅保護(hù)層,在進(jìn)行蝕刻時(shí),覆蓋二氧化硅較薄區(qū)域的藍(lán)寶石基板則會(huì)先被蝕刻,進(jìn)而形成粗糙化的表面。在發(fā)光性能表現(xiàn)上,有制作元件形狀化之覆晶LED比傳統(tǒng)覆晶發(fā)光二極體的流明度增加了62%;在功率的表現(xiàn)上,于20mA的注入電流下,有形狀化的LED輸出光功率為14.2 mW,比傳統(tǒng)覆晶結(jié)構(gòu)LED的9.3 mW,增加了52%,如圖10所示[4, 6].
圖8、元件形狀化之覆晶LED工藝流程圖
圖9、具形狀化之覆晶LED結(jié)構(gòu)示意圖
(a) 電流發(fā)光強(qiáng)度圖
(b) 電流輸出功率圖
圖10、有無形狀化之覆晶LED的(a)電流發(fā)光強(qiáng)度與(b)電流輸出功率比較圖
此外,針對(duì)芯片后段工藝,在雷射切割芯片后之殘留物問題,也可應(yīng)用高溫磷酸蝕刻技術(shù)來解決此問題,因?yàn)槭褂美咨淝懈頛ED芯片后,會(huì)將基材燒出一道痕跡,因此在芯片邊緣會(huì)流下焦黑的切割痕跡,這種切割殘留物會(huì)影響LED亮度達(dá)5~10%,如圖11所示為雷射切割LED芯片后之SEM照片。對(duì)于現(xiàn)今HB-LED對(duì)于亮度錙銖必較之情形,亦有業(yè)界于雷射切割后,接著使用高溫磷酸來進(jìn)行藍(lán)寶石基板的側(cè)邊蝕刻(Sapphire Sidewall Etching; SSE),以去除雷射切割后的焦黑殘留物,進(jìn)而增進(jìn)HB-LED的發(fā)光效率。
圖11、雷射切割LED芯片后之SEM照片。
高溫磷酸濕式蝕刻工藝設(shè)備在制作上,必須考慮的設(shè)計(jì)項(xiàng)目
圖12為弘塑科技(Grand Plastic Technology Corporation; GPTC)所制作之全自動(dòng)化高溫磷酸濕式蝕刻工藝設(shè)備,由于磷酸濕式蝕刻工藝設(shè)備是在280~300℃高溫下進(jìn)行,所以必須考慮加熱方式,昇降溫度之速率控制,因應(yīng)石英槽體之熱應(yīng)力分析所設(shè)計(jì)的槽體機(jī)械結(jié)構(gòu),化學(xué)蝕刻液補(bǔ)充系統(tǒng)的補(bǔ)充精確度及設(shè)備自動(dòng)化必須能夠兼顧人員安全與環(huán)保設(shè)計(jì)等。系統(tǒng)在制作上有七大設(shè)計(jì)關(guān)鍵,分別詳述如下:
I.安全性設(shè)計(jì):符合SEMI-S2, 200認(rèn)證,人員與上下貨區(qū)域作分離,可確保操作人員之工作安全,以及將反應(yīng)廢氣充分抽離,維持空氣之高潔凈度。
II.高產(chǎn)能設(shè)計(jì):一次可上貨達(dá)200片外延片,產(chǎn)能為一般設(shè)備的2.75倍。
III.多槽體設(shè)計(jì):具備多組磷酸槽,當(dāng)1組磷酸槽作工藝蝕刻時(shí),另外1組磷酸槽可同步進(jìn)行化學(xué)品更換與加熱,如此可防止因等待化學(xué)品更換或加熱所造成的時(shí)間浪費(fèi)。
IV.加熱與溫度控制:在石英槽體外圍鍍上一層薄膜加熱層,此種加熱方式可以使得溫度均勻分布于整個(gè)槽體,防止因溫度梯度所造成芯片的局部熱應(yīng)力,以及蝕刻速率之變異,目前高溫磷酸濕式化學(xué)蝕刻藍(lán)寶石基板的厚度可精確控制在1.9±0.1μm,蝕刻速率為每秒27.5 ± 0.5 A.
V.昇降溫度之速率控制:具備外延片蝕刻前之預(yù)先加熱,以及蝕刻候之冷卻設(shè)計(jì),可避免外延片因急速昇降溫度所產(chǎn)生的熱沖擊破片。[!--empirenews.page--]
VI.化學(xué)品供應(yīng)系統(tǒng):化學(xué)液之補(bǔ)充體積的精確度要高。
VII.外延片自動(dòng)傳送系統(tǒng):外延片傳送可保證連續(xù)順利傳送達(dá)400 Runs,以確保制造上之良率。
圖12、弘塑科技設(shè)計(jì)制作之高溫磷酸濕式蝕刻自動(dòng)化量產(chǎn)設(shè)備。
結(jié)論
本文已針對(duì)藍(lán)寶石基板之高溫磷酸濕式蝕刻工藝,以及其工藝設(shè)備在設(shè)計(jì)制作上必須考慮哪些因素,進(jìn)行詳細(xì)探討。由于LED之藍(lán)寶石基板化學(xué)濕式蝕刻工藝,可藉由基板表面幾何圖形之變化,來改變LED的散射機(jī)制,或?qū)⑸⑸涔鈱?dǎo)引至LED內(nèi)部,進(jìn)而由逃逸角錐中穿出,所以成為增加LED光萃取效率的有效技術(shù)。目前LED業(yè)界特別考慮到如何降低成本與增進(jìn)產(chǎn)能,并且又要合乎環(huán)保與工業(yè)安全等需求,可以預(yù)見地具備操作自動(dòng)化與工藝標(biāo)準(zhǔn)化之系統(tǒng)設(shè)備,將成為未來LED生產(chǎn)線量產(chǎn)之競爭主力。