關(guān)于一些電機驅(qū)動器電路設(shè)計PCB建議
PCB( Printed Circuit Board),中文名稱為印制電路板,又稱印刷線路板,是重要的電子部件,是電子元器件的支撐體,是電子元器件電氣連接的載體。由于它是采用電子印刷術(shù)制作的,故被稱為“印刷”電路板。
直流電機驅(qū)動電路的設(shè)計目標(biāo)
在直流電機驅(qū)動電路的設(shè)計中,主要考慮一下幾點:
1. 功能:電機是單向還是雙向轉(zhuǎn)動?需不需要調(diào)速?對于單向的電機驅(qū)動,只要用一個大功率三極管或場效應(yīng)管或繼電器直接帶動電機即可,當(dāng)電機需要雙向轉(zhuǎn)動時,可以使用由4個功率元件組成的H橋電路或者使用一個雙刀雙擲的繼電器。如果不需要調(diào)速,只要使用繼電器即可;但如果需要調(diào)速,可以使用三極管,場效應(yīng)管等開關(guān)元件實現(xiàn)PWM(脈沖寬度調(diào)制)調(diào)速。
2. 性能:對于PWM調(diào)速的電機驅(qū)動電路,主要有以下性能指標(biāo)。
1)輸出電流和電壓范圍,它決定著電路能驅(qū)動多大功率的電機。
2)效率,高的效率不僅意味著節(jié)省電源,也會減少驅(qū)動電路的發(fā)熱。要提高電路的效率,可以從保證功率器件的開關(guān)工作狀態(tài)和防止共態(tài)導(dǎo)通(H橋或推挽電路可能出現(xiàn)的一個問題,即兩個功率器件同時導(dǎo)通使電源短路)入手。
3)對控制輸入端的影響。功率電路對其輸入端應(yīng)有良好的信號隔離,防止有高電壓大電流進入主控電路,這可以用高的輸入阻抗或者光電耦合器實現(xiàn)隔離。
4)對電源的影響。共態(tài)導(dǎo)通可以引起電源電壓的瞬間下降造成高頻電源污染;大的電流可能導(dǎo)致地線電位浮動。
5)可靠性。電機驅(qū)動電路應(yīng)該盡可能做到,無論加上何種控制信號,何種無源負(fù)載,電路都是安全的。
1.輸入與電平轉(zhuǎn)換部分:
輸入信號線由DATA引入,1腳是地線,其余是信號線。注意1腳對地連接了一個2K歐的電阻。當(dāng)驅(qū)動板與單片機分別供電時,這個電阻可以提供信號電流回流的通路。當(dāng)驅(qū)動板與單片機共用一組電源時,這個電阻可以防止大電流沿著連線流入單片機主板的地線造成干擾?;蛘哒f,相當(dāng)于把驅(qū)動板的地線與單片機的地線隔開,實現(xiàn)“一點接地”。
高速運放KF347(也可以用TL084)的作用是比較器,把輸入邏輯信號同來自指示燈和一個二極管的2.7V基準(zhǔn)電壓比較,轉(zhuǎn)換成接近功率電源電壓幅度的方波信號。KF347的輸入電壓范圍不能接近負(fù)電源電壓,否則會出錯。因此在運放輸入端增加了防止電壓范圍溢出的二極管。輸入端的兩個電阻一個用來限流,一個用來在輸入懸空時把輸入端拉到低電平。
不能用LM339或其他任何開路輸出的比較器代替運放,因為開路輸出的高電平狀態(tài)輸出阻抗在1千歐以上,壓降較大,后面一級的三極管將無法截止。
2.柵極驅(qū)動部分:
后面三極管和電阻,穩(wěn)壓管組成的電路進一步放大信號,驅(qū)動場效應(yīng)管的柵極并利用場效應(yīng)管本身的柵極電容(大約1000pF)進行延時,防止H橋上下兩臂的場效應(yīng)管同時導(dǎo)通(“共態(tài)導(dǎo)通”)造成電源短路。
當(dāng)運放輸出端為低電平(約為1V至2V,不能完全達到零)時,下面的三極管截止,場效應(yīng)管導(dǎo)通。上面的三極管導(dǎo)通,場效應(yīng)管截止,輸出為高電平。當(dāng)運放輸出端為高電平(約為VCC-(1V至2V),不能完全達到VCC)時,下面的三極管導(dǎo)通,場效應(yīng)管截止。上面的三極管截止,場效應(yīng)管導(dǎo)通,輸出為低電平。
上面的分析是靜態(tài)的,下面討論開關(guān)轉(zhuǎn)換的動態(tài)過程:三極管導(dǎo)通電阻遠(yuǎn)小于2千歐,因此三極管由截止轉(zhuǎn)換到導(dǎo)通時場效應(yīng)管柵極電容上的電荷可以迅速釋放,場效應(yīng)管迅速截止。但是三極管由導(dǎo)通轉(zhuǎn)換到截止時場效應(yīng)管柵極通過2千歐電阻充電卻需要一定的時間。相應(yīng)的,場效應(yīng)管由導(dǎo)通轉(zhuǎn)換到截止的速度要比由截止轉(zhuǎn)換到導(dǎo)通的速度快。假如兩個三極管的開關(guān)動作是同時發(fā)生的,這個電路可以讓上下兩臂的場效應(yīng)管先斷后通,消除共態(tài)導(dǎo)通現(xiàn)象。
實際上,運放輸出電壓變化需要一定的時間,這段時間內(nèi)運放輸出電壓處于正負(fù)電源電壓之間的中間值。這時兩個三極管同時導(dǎo)通,場效應(yīng)管就同時截止了。所以實際的電路比這種理想情況還要安全一些。
場效應(yīng)管柵極的12V穩(wěn)壓二極管用于防止場效應(yīng)管柵極過壓擊穿。一般的場效應(yīng)管柵極的耐壓是18V或20V,直接加上24V電壓將會擊穿,因此這個穩(wěn)壓二極管不能用普通的二極管代替,但是可以用2千歐的電阻代替,同樣能得到12V的分壓。
3.場效應(yīng)管輸出部分:
大功率場效應(yīng)管內(nèi)部在源極和漏極之間反向并聯(lián)有二極管,接成H橋使用時,相當(dāng)于輸出端已經(jīng)并聯(lián)了消除電壓尖峰用的四個二極管,因此這里就沒有外接二極管。輸出端并聯(lián)一個小電容(out1和out2之間)對降低電機產(chǎn)生的尖峰電壓有一定的好處,但是在使用PWM時有產(chǎn)生尖峰電流的副作用,因此容量不宜過大。在使用小功率電機時這個電容可以略去。如果加這個電容的話,一定要用高耐壓的,普通的瓷片電容可能會出現(xiàn)擊穿短路的故障。
輸出端并聯(lián)的由電阻和發(fā)光二極管,電容組成的電路指示電機的轉(zhuǎn)動方向.
4.性能指標(biāo):
電源電壓15~30 V,最大持續(xù)輸出電流5A/每個電機,短時間(10秒)可以達到10A,PWM頻率最高可以用到30KHz(一般用1到10KHz)。電路板包含4個邏輯上獨立的,輸出端兩兩接成H橋的功率放大單元,可以直接用單片機控制。實現(xiàn)電機的雙向轉(zhuǎn)動和調(diào)速。
5.PCB的布局布線:
大電流線路要盡量的短粗,并且盡量避免經(jīng)過過孔,一定要經(jīng)過過孔的話要把過孔做大一些(>1mm)并且在焊盤上做一圈小的過孔,在焊接時用焊錫填滿,否則可能會燒斷。另外,如果使用了穩(wěn)壓管,場效應(yīng)管源極對電源和地的導(dǎo)線要盡可能的短粗,否則在大電流時,這段導(dǎo)線上的壓降可能會經(jīng)過正偏的穩(wěn)壓管和導(dǎo)通的三極管將其燒毀。在一開始的設(shè)計中,NMOS管的源極于地之間曾經(jīng)接入一個0.15歐的電阻用來檢測電流,這個電阻就成了不斷燒毀板子的罪魁禍?zhǔn)?。?dāng)然如果把穩(wěn)壓管換成電阻就不存在這個問題了。
電機驅(qū)動電路的PCB 需要采用特殊的冷卻技術(shù),以解決功耗問題。印刷電路板 (PCB) 基材(例如 FR-4 環(huán)氧樹脂玻璃)的導(dǎo)熱性較差。相反,銅的導(dǎo)熱性非常出色。因此,從熱管理角度來看,增加 PCB 中的銅面積是一個理想方案。厚銅箔(例如:2 盎司(68 微米厚))的導(dǎo)熱性優(yōu)于較薄的銅箔。然而,使用厚銅箔的成本較高,并且難以實現(xiàn)精細(xì)的幾何形狀。因此,使用 1 盎司(34 微米)銅箔變得很常見。外層通常使用? 盎司到1 盎司的銅箔。多層電路板內(nèi)層使用的固體銅面具有良好的散熱性。然而,由于這些銅面通常都置于電路板疊層的中央,因此熱量會聚集在電路板內(nèi)部。增加 PCB 外層的銅面積,并經(jīng)由許多通孔連接或“縫接”至內(nèi)層,有助于將熱量轉(zhuǎn)移到內(nèi)層外部。
由于存在走線和元件,雙層 PCB 的散熱可能會更加困難。因此,盡可能多地提供固體銅面,并實現(xiàn)與電機驅(qū)動器 IC 的良好熱連接顯得非常必要。在兩個外層上都增加覆銅區(qū),并將其與許多通孔連接在一起,有助于由走線和元件分割的各區(qū)域間散熱。
a、走線寬度:越寬越好
由于電機驅(qū)動器 IC 的進出電流較大(在一些情況下超過 10 A),因此應(yīng)謹(jǐn)慎考慮進出器件的 PCB 走線寬度。走線越寬,電阻越低。必須調(diào)整走線尺寸,以使走線電阻不會消耗過多功率,避免導(dǎo)致走線升溫。太小的走線其實可以作為電熔絲,并且容易燒斷!
設(shè)計師通常使用 IPC-2221 標(biāo)準(zhǔn)來確定適當(dāng)?shù)淖呔€寬度。這一規(guī)范針對各種電流電平和允許的溫升提供了顯示銅橫截面積的相應(yīng)圖表,可轉(zhuǎn)換為給定銅層厚度條件下的走線寬度。例如 1 盎司銅層中承載 10 A 電流的走線需要稍寬于 7 mm,以實現(xiàn) 10℃的溫升。針對 1-A 電流,走線寬度只需為 0.3 mm。
鑒于此,10 A 電流似乎不可能通過微型 IC 板。
需要理解的是,IPC-2221 中建議的走線寬度適用于等寬長距離 PCB 走線。如果采用更短的PCB 走線也有可能通過更大得多的電流,且不會產(chǎn)生任何不良作用。這是因為短而窄的 PCB 走線電阻較小,且產(chǎn)生的任何熱量都將被吸收至更寬的銅區(qū)域,而該區(qū)域則起到了散熱片的作用。
加寬 PCB 走線,
以使 IC 板能夠更好地處理持續(xù)電流。
參見圖中的示例。盡管該器件的 IC 板只有 0.4 mm 寬,但它們必須承載高達 3 A 的持續(xù)電流。所以我們需要盡可能地將走線加寬,并靠近器件。
走線較窄部分產(chǎn)生的任何熱量被傳導(dǎo)至較寬的銅區(qū)域,以使較窄走線的溫升可以忽略不計。
嵌入在 PCB 內(nèi)層的走線無法像外層的走線一樣充分散熱,因為絕緣基板的導(dǎo)熱性不佳。為此,內(nèi)層走線應(yīng)設(shè)計為外層走線的約兩倍寬。
作為一個大致的指導(dǎo)方針,下表顯示了電機驅(qū)動器應(yīng)用中較長走線(超過大約 2 cm)的建議走線寬度。
如果空間允許,使用更寬走線或覆銅區(qū)的布線可使溫升和壓降達到最低。
b、熱通孔:盡可能多地使用
通孔是小型的電鍍孔,通常用于將一根走線從一層穿至另一層。雖然熱通孔采用同樣的方式制成,但卻用于將熱量從一層傳至另一層。適當(dāng)使用熱通孔對于 PCB 的散熱至關(guān)重要,但是必須考慮幾個工藝性問題。
通孔具有熱阻,這意味著當(dāng)熱量流過通孔時,通孔之間會出現(xiàn)一些溫降,測量單位為℃/W。為使這一熱阻降至最低,并提高通孔傳輸熱量時的效率,應(yīng)使用大通孔,且孔內(nèi)應(yīng)含有盡可能多的銅面積。
應(yīng)使用大通孔(圖為通孔的橫截面),且孔內(nèi)應(yīng)含有盡可能多的銅面積,以使熱阻降至最低。
盡管在 PCB 的開口區(qū)域可以使用大通孔,但通孔往往置于 IC 板區(qū)域內(nèi),以直接從 IC 封裝中轉(zhuǎn)移熱量。在這種情況下,無法使用大通孔。這是因為大型的電鍍通孔可能會導(dǎo)致“滲錫”,即用于連接 IC 與 PCB 的焊料向下流入通孔中,從而導(dǎo)致焊接點質(zhì)量不佳。
可以通過幾種方式來減少滲錫。其中一種是使用非常小的通孔,以減少滲入到孔中的焊料量。然而,小型通孔的熱阻更高,因此為實現(xiàn)相同的熱力性能,需要更多的通孔。
另一種技術(shù)是在板的背面為通孔“搭帳篷”。這需要移除板背面阻焊層中的缺口,以使阻焊層材料蓋住通孔。如果通孔較小,阻焊層將塞住通孔;因此,焊料就無法滲透 PCB。
不過,這可能會產(chǎn)生另外一個問題:焊劑聚集。通孔被塞住后,通孔中可能會聚集焊劑(焊膏的一種成分)。一些焊劑配方可能具有腐蝕性,如不去除,時間一長會導(dǎo)致可靠性問題。不過,現(xiàn)代大多數(shù)免清洗焊劑工藝不具有腐蝕性,且不會導(dǎo)致問題。
請注意,熱通孔不得使用熱風(fēng)焊盤,它們必須直接連接至銅區(qū)域。
熱通孔應(yīng)直接連接PCB 上的銅區(qū)域。
建議 PCB 設(shè)計人員與表面貼裝技術(shù) (SMT) 工藝工程師一起檢查 PCB 組裝件,以選擇適用于該組裝件工藝的最佳通孔尺寸和結(jié)構(gòu),尤其是當(dāng)熱通孔置于 IC 板區(qū)域內(nèi)時。
c、電容的布放
電機驅(qū)動器 IC 的元件布局指南與其他類型的電源 IC 類似。旁路電容器應(yīng)盡可能地靠近器件電源引腳,而大容量電容器則置于其旁邊。許多電機驅(qū)動器 IC 使用引導(dǎo)和/或電荷泵電容器,其同樣應(yīng)置于 IC 附近。
大多數(shù)信號直接在頂層路由。電源從大容量電容器路由至底層的旁路和電荷泵電容器,同時在各層過渡之處使用多個通孔。
TSSOP 和 QFN 封裝的器件底層有一個較大的外露式 IC 板。該 IC 板連接至芯片的背面,用于去除器件中的熱量。該 IC 板必須充分焊接至 PCB 上,以消耗功率。
為沉積該 IC 板的焊膏而使用的模具開口并不一定會在 IC 數(shù)據(jù)表中詳細(xì)說明。通常,SMT 工藝工程師對模具上應(yīng)沉積多少焊料以及模具應(yīng)使用何種圖案有其自己的規(guī)則。
如果使用類似于 IC 板大小的單個開口,則會沉積大量焊膏。這樣可能會因焊料熔化時的表面張力而導(dǎo)致器件被抬起。另一個問題是焊料空洞(焊料區(qū)域內(nèi)的空腔或缺口)。在回流焊過程中,焊劑的揮發(fā)性成分蒸發(fā)或沸騰時,就會出現(xiàn)焊料空洞。這可能會導(dǎo)致焊料被推出焊接點。
為解決這些問題,針對面積大于約 2 平方毫米的 IC 板,焊膏通常沉積在幾個小的方形或圓形區(qū)域。將焊膏分成更小的區(qū)域可使焊劑的揮發(fā)性成分更易于逸散出焊膏,而不會使焊料移位。
QFN 封裝的該焊料模有四個小開口,用于沉積中央IC 板上的焊膏。
SOT-23 和 SOIC 封裝
標(biāo)準(zhǔn)的引線封裝(如 SOIC 和 SOT-23 封裝)通常用于低功率電機驅(qū)動器中。
為了充分提高引線封裝的功耗能力,采用“倒裝芯片引線框架”結(jié)構(gòu)。在不使用接合線的情況下,使用銅凸點和焊料將芯片粘接至金屬引線,從而可通過引線將熱量從芯片傳導(dǎo)至 PCB。
倒裝芯片引線框架結(jié)構(gòu)有助于充分提高引線封裝的功耗能力。
通過將較大的銅區(qū)域連接至承載較大電流的引線,可優(yōu)化熱性能。在電機驅(qū)動器 IC 上,通常電源、接地和輸出引腳均連接至銅區(qū)域。
如下圖所示為“倒裝芯片引線框架”SOIC 封裝的典型 PCB 布局。引腳 2 為器件電源引腳。請注意,銅區(qū)域置于頂層器件的附近,同時幾個熱通孔將該區(qū)域連接至 PCB 背面的銅層。引腳 4 為接地引腳,并連接至表層的接地覆銅區(qū)。引腳 3(器件輸出)也被路由至較大的銅區(qū)域。
倒裝芯片 SOIC PCB 布局
請注意,SMT 板上沒有熱風(fēng)焊盤;它們牢牢地連接至銅區(qū)域。這對實現(xiàn)良好的熱性能至關(guān)重要。
QFN 和 TSSOP 封裝
TSSOP 封裝為長方形,并使用兩排引腳。電機驅(qū)動器 IC 的 TSSOP 封裝通常在封裝底部帶有一個較大的外露板,用于排除器件中的熱量。
TSSOP 封裝通常在底部帶有一個較大的外露板,用于排除熱量。
QFN 封裝為無引線封裝,在器件外緣周圍帶有板,器件底部中央還帶有一個更大的板。這個更大的板用于吸收芯片中的熱量。
為排除這些封裝中的熱量,外露板必須進行良好的焊接。外露板通常為接地電位,因此可以接入 PCB 接地層。 在理想情
況下,熱通孔直接位于板區(qū)域。在的 TSSOP 封裝的示例中,采用了一個 18 通孔陣列,鉆孔直徑為 0.38 mm。該通孔陣列的計算熱阻約為 7.7°C/W。
采用了一個 18 熱通孔陣列的 TSSOP 封裝 PCB 布局
通常,這些熱通孔使用 0.4 mm 及更小的鉆孔直徑,以防止出現(xiàn)滲錫。如果 SMT 工藝要求使用更小的孔徑,則應(yīng)增加孔數(shù),以盡可能保持較低的整體熱阻。
除了位于板區(qū)域的通孔,IC 主體外部區(qū)域也設(shè)有熱通孔。在 TSSOP 封裝中,銅區(qū)域可延伸至封裝末端之外,這為器件中的熱量穿過頂部的銅層提供了另一種途徑。
QFN 器件封裝邊緣四周的板避免在頂部使用銅層吸收熱量。必須使用熱通孔將熱量驅(qū)散至內(nèi)層或 PCB 的底層。
圖中的 PCB 布局所示為一個小型的 QFN (4 × 4 mm) 器件。在外露板區(qū)域中,只容納了九個熱通孔。因此,該 PCB 的熱性能不及 TSSOP 封裝。
倒裝芯片 QFN 封裝
倒裝芯片 QFN (FCQFN) 封裝與常規(guī)的 QFN 封裝類似,但其芯片采取倒裝的方式直接連接至器件底部的板上,而不是使用接合線連接至封裝板上。這些板可以置于芯片上的發(fā)熱功率器件的反面,因此它們通常以長條狀而不是小板狀布置。
這些封裝在芯片的表面采用了多排銅凸點粘接至引線框架。
FCQFN 封裝在芯片的表面采用了多排銅凸點粘接至引線框架
小通孔可置于板區(qū)域內(nèi),類似于常規(guī) QFN 封裝。在帶有電源和接地層的多層板上,通孔可直接將這些板連接至各層。在其他情況下,銅區(qū)域必須直接連接至板,以便將 IC 中的熱量吸入較大的銅區(qū)域中。
下圖器件具有較長的電源和接地板,以及三個輸出口。請注意,該封裝只有 4 × 4 mm 大小。
FCQFN封裝IC的 PCB 布局
器件左側(cè)的銅區(qū)域為功率輸入口。這個較大的銅區(qū)域直接連接至器件的兩個電源板。
三個輸出板連接至器件右側(cè)的銅區(qū)域。注意銅區(qū)域在退出板之后盡可能地擴展。這樣可以充分將熱量從板傳遞到環(huán)境空氣中。
同時,注意器件右側(cè)兩個板中的數(shù)排小通孔。這些板均進行了接地,且 PCB 背面放置了一個實心接地層。這些通孔的直徑為 0.46 mm,鉆孔直徑為 0.25 mm。通孔足夠小,適合置于板區(qū)域內(nèi)。
綜上所述,為了使用電機驅(qū)動器 IC 實施成功的 PCB 設(shè)計,必須對 PCB 進行精心的布局。因此,本文提供了一些實用性的建議,以期望可以幫助 PCB 設(shè)計人員實現(xiàn)PCB板良好的電氣和熱性能。