當(dāng)前位置:首頁 > 嵌入式 > 嵌入式教程
[導(dǎo)讀]一種嵌入式高性能比較器

1 引言

按一般原理,比較器將輸入信號進(jìn)行比較,得到數(shù)字邏輯部分能夠識別的數(shù)字信號[1]。 它是A/D 轉(zhuǎn)換器的核心單元,其精度、速度等指標(biāo)直接影響整個A/D 轉(zhuǎn)換器的性能。在轉(zhuǎn)換器中通常采用比較器級聯(lián)的結(jié)構(gòu),這種結(jié)構(gòu)能夠提高速度、保證分辨率、降低延時和功率 消耗,同時它對輸入電壓范圍、輸入電阻以及電路面積也有很大的影響。此外,由于器件失 配、電壓范圍受限制等影響精度的因素的存在,引入失調(diào)校準(zhǔn)技術(shù)則是必不可少的步驟[2-8]。

就一個速度為 1MS/s、10-bit 的逐次逼近型A/D 轉(zhuǎn)換器來說,其比較器的精度要求至少應(yīng)達(dá)到1/2LSB,即0.5mV,轉(zhuǎn)換速率在10MHz 以上[2]??紤]到設(shè)計(jì)余量,本文所論及的比 較器能夠分辨0.2mV 的電壓,速度能達(dá)到20MHz,而功耗僅為8μW,其能滿足嵌入式A/D 轉(zhuǎn)換器高精度、中速,低功耗之性能要求的優(yōu)勢顯而易見。 在本文中,我們首先介紹比較器的基本結(jié)構(gòu),稍后再對比較器各級的具體電路加以分析, 最后給出結(jié)果分析。

2 電路結(jié)構(gòu)分析

級聯(lián)結(jié)構(gòu)的比較器逐級放大輸入信號,使之放大到數(shù)字電路可以識別的幅度。這樣就可 以避免由于比較器增益過大而引起的運(yùn)行不穩(wěn)定現(xiàn)象。但是,對于一個逐次逼近型的A/D 轉(zhuǎn)換器,為保證一定的速度,比較器級聯(lián)的個數(shù)m 也要符合一定的規(guī)則。

利用公式 m ≈ ln(1/ r),最終得到m=6,其中r 是分辨率,這里就是1/1024[3]。比較器的恢復(fù)時間是制 約響應(yīng)速度的一大因素,本設(shè)計(jì)中單級比較器的恢復(fù)時間為15ns,而級聯(lián)后為1ns,恢復(fù)時 間明顯縮短,且遠(yuǎn)小于時鐘周期的一半,保證比較器可靠的工作。

本文設(shè)計(jì)的比較器,其前三級是帶有正反饋的差分放大器,它能夠迅速將輸入信號建立 到數(shù)字電路可以處理的幅度,而且它結(jié)構(gòu)簡單,對中、高速比較器來說是較好的選擇[4],而 與此相比,電路后三級則是簡單的反相器。

另一方面,為達(dá)到10-bit 的分辨率,比較器之間都采用了電容耦合,通過將貯存在電容 上的失調(diào)電壓與輸入疊加來消除失調(diào)電壓。本設(shè)計(jì)采用的是一種混合的失調(diào)校準(zhǔn)技術(shù),即它 同時使用了輸入失調(diào)校準(zhǔn)(IOS)和輸出失調(diào)校準(zhǔn)(OOS)技術(shù)。IOS 是通過組成單位增益 將失調(diào)電壓貯存在輸入耦合電容,而OOS 則是通過將輸入短接,把失調(diào)電壓存儲在輸出耦 合電容。對于相同的前置放大器,引用OOS 方法可以得到更小的剩余失調(diào)電壓,并且OOS 要比IOS 中的偶合電容小,但是,OOS 的方法通常對前置放大器的增益有著嚴(yán)格的控制, 而IOS 方法中所組成的反饋結(jié)構(gòu),能夠促使前置放大器進(jìn)入工作區(qū)。因此,人們通常采用 兩種方法的多級結(jié)構(gòu)[5]。

2.1 第一級比較器結(jié)構(gòu)

為了減小比較器小信號輸出的建立時間,通常的規(guī)則是要求第一級比較器具備一定的增 益和足夠大的帶寬[3]。柵極交叉的正反饋可以很大程度的提高電路增益,但是為了更好達(dá)到 指標(biāo),本設(shè)計(jì)采用兩級運(yùn)放構(gòu)成的比較器。

結(jié)構(gòu)如圖 1 所示, M1,M2 組成出入差分對,M5,M7,M6,M8 構(gòu)成柵極交叉的、帶 有正反饋的負(fù)載,這樣的狀態(tài)可以提高電路的增益,而且M5 和M6 要比M7 和M8 的跨導(dǎo) 小,使得這個電路構(gòu)成弱反饋。至于M3,M4,它們則構(gòu)成第二級正反饋[6]。通過優(yōu)化正反饋中M3~M8 的寬長比,還可以達(dá)到減小靜態(tài)電流,減小相應(yīng)功耗的目的。


對其進(jìn)行交流仿真,得到第一級的增益為 20dB,帶寬為62.5MHz,性能明顯優(yōu)于一級 運(yùn)放,驗(yàn)證了選擇的正確性。

此外,第一級比較器只采用輸出失調(diào)校準(zhǔn)技術(shù)(OOS),并且失調(diào)電壓是通過放大后存 儲在電容上的,在這種情況下,就很容易出現(xiàn)耦合電容飽和現(xiàn)象。為了防止這種結(jié)果的產(chǎn)生, 設(shè)計(jì)者必須要嚴(yán)格的控制第一級的增益[5]。由圖知,這一級比較器是通過兩級運(yùn)放實(shí)現(xiàn)。那么首先計(jì)算第一級的直流電壓增益。假設(shè)



[!--empirenews.page--]圖 3 為其仿真波形, 兩個輸入在時鐘為低電平時各為其值,當(dāng)時鐘轉(zhuǎn)換成高電平時兩者相等。


2.2 第二級比較器的結(jié)構(gòu)

比較器 2 與比較器1 的結(jié)構(gòu)基本相同,差別只是在第一級運(yùn)放的輸入和輸出之間加入了 開關(guān)。當(dāng)控制時鐘為低電平時,比較器輸出與異端輸入端接,進(jìn)行失調(diào)校準(zhǔn)。 假設(shè)開關(guān) S1,S2注入到電容上的電荷失配量為△Q ,C1=C2=C,則剩余的輸入失調(diào) / OS V ∝ ΔQ C 由此可見,增大C 可以減小剩余失調(diào)電壓,但是,增大C 會延長復(fù)位和輸出建立時間, 而且會增大面積,于是我們折中考慮,選取C=544.5fF[5]。這一級放大器的增益為13。

2.3 第三級比較器的結(jié)構(gòu)

該級比較器仍是由兩級運(yùn)放構(gòu)成。第一級運(yùn)放通過采用柵極交叉的弱正反饋結(jié)構(gòu)、優(yōu)化 管子的寬長比,提高了原有電路的增益,但其代價是減小了帶寬。本級放大器的增益為730。 第二級運(yùn)放使用鏡像電路形成單端輸出。

3 結(jié)果分析

3.1 整體仿真

本文所論及的比較器采用 SIMC 0.25μm CMOS 工藝模型,選取電源電壓為2.5V,時鐘 周期為250ns,并且使用Hspice 進(jìn)行瞬態(tài)仿真。設(shè)定Vref=1.25V,Vin 每50ns 變化一次,分別為1.2498V,1.2502V,1.25V,1.2502V,1.2498V,其中當(dāng)0~50ns 時鐘為高電平時,比 較器處于失調(diào)校準(zhǔn)階段。仿真圖4:



3.2 功耗分析

整個比較器的瞬態(tài)電流值見圖 5,由圖可知,在時鐘信號跳變時,會給瞬態(tài)電流一個較 大的沖擊,因此降低時鐘的轉(zhuǎn)換速率可降低功耗。同時功耗是電壓和電流的乘積,降低電源 電壓也能達(dá)到降低功耗的目的。綜合考慮,本設(shè)計(jì)采用占空比為1/5、周期為250ns 的時鐘 信號和2.5V 的電源電壓。另外,本設(shè)計(jì)結(jié)構(gòu)簡單,減少了有效MOS 管的數(shù)量,這也是降 低功耗的又一大因素。通過使用 Cadence 的計(jì)算工具的到平均電流為3.23μA,功耗為8μW。


4 結(jié)論

本文作者的創(chuàng)新點(diǎn)是,將六級比較器級聯(lián),其中前三級是帶有柵極交叉正反饋的兩級運(yùn) 算放大器,將信號迅速放大,縮短建立時間;整個電路結(jié)構(gòu)簡單,所占面積小;經(jīng)過綜合考 慮,本設(shè)計(jì)采用了周期為250ns 的時鐘信號和2.5V 的電源電壓,大幅度的減低功耗;引入 了輸入失調(diào)校準(zhǔn)(IOS)、輸出失調(diào)校準(zhǔn)(OOS)混合的校準(zhǔn)技術(shù)和自清零技術(shù),提高比較 器精度。該比較器滿足嵌入式10bit 逐次逼近A/D 轉(zhuǎn)換器高精度、中速、低功耗的性能要求。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉