嵌入式Linux下ARM處理器與DSP的數(shù)據(jù)通信
摘要:本文通過一個開發(fā)實例詳細說明如何通過DSP的HPI接口與運行Linux操作系統(tǒng)的ARM架構(gòu)處理器進行數(shù)據(jù)通信。給出接口部分的實際電路和ARM-Linux下驅(qū)動程序的開發(fā)過程。
關(guān)鍵詞:設(shè)備驅(qū)動程序 嵌入式Linux HPI ARM DSP
1 引言
基于ARM核心處理器的嵌入式系統(tǒng)以其自身資源豐富、功耗低、價格低廉、支持廠商眾多的緣故,越來越多地應(yīng)用在各種需要復(fù)雜控制和通信功能的嵌入式系統(tǒng)中。
內(nèi)核源碼開放的Linux與ARM體系處理器相結(jié)合,可以發(fā)揮Linux系統(tǒng)支持各種協(xié)議及存在多進程調(diào)度機制的優(yōu)點,從而使開發(fā)周期縮短,擴展性增強。作為數(shù)字處理專用電路,DSP的數(shù)字信號處理能力十分強大,但對諸如任務(wù)管理、通信、人機交互等功能的實現(xiàn)較為困難。
如果將這三者結(jié)合起來,即由DSP結(jié)合采樣電路采集并處理信號,由ARM處理器作為平臺,運行Linux操作系統(tǒng),將經(jīng)過DSP運算的結(jié)果發(fā)送給用戶程序進行進一步處理,然后提供給圖形化友好的人機交互環(huán)境完成數(shù)據(jù)分析和網(wǎng)絡(luò)傳輸?shù)裙δ?,就會最大限度的發(fā)揮三者所長。
2 系統(tǒng)結(jié)構(gòu)
該系統(tǒng)硬件由二部分組成,其中一部分為若干塊DSP板,各自獨立承接數(shù)據(jù)采集和信號處理。另一部分為以ARM為核心處理器的CPU板。系統(tǒng)硬件框圖如圖1所示(僅接口部分)。
3 接口硬件部分設(shè)計
3.1 HPI接口簡介
HPI接口是TI公司新一代、高性能DSP上用以完成與主機或其他DSP之間數(shù)據(jù)交換的接口,這里主要介紹實際電路中使用的控制引腳和時序。
HCNTL0和HCNTL1為訪問控制選擇。用來確定主機(ARM)究竟對TMS320C6711中的哪一個HPI寄存器進行處理。具體功能如表1所列。
表1 HCNTL0和HCNTL1的功能
HCNTL0 | HCNTL1 |
功 能 |
0 | 0 | 主機對HPI控制寄存器(HPIC)進行讀寫 |
0 | 1 | 主機對HPI地址寄存器(HPIA)進行讀寫 |
1 | 0 | 主機對HPI數(shù)據(jù)寄存器(HPID)地址自動增加模式(Auto increment mode)進行讀寫,對HPID讀寫后,地址寄存器(HPIA)自動增加一個字地址(4字節(jié)地址) |
1 | 1 | 主機對HPI數(shù)據(jù)寄存器(HPID)地址固定模式(Fixed mode)進行讀寫。對HPID讀寫后,地址寄存器(HPIA)保持不變 |
HR/W:讀寫選擇控制。為“1”表示是從DSP中讀,反之則為寫。
HHWIL:半字節(jié)定義選擇,與HPIC寄存器中的HWOB位進行配合可以選擇當(dāng)前傳輸?shù)氖歉甙胱诌€是低半字。低電平是第一個半字,高電平是第二個半字。
HCS:選通脈沖(Strobe),與HDS1、HDS2相互配合完成內(nèi)部信號HSTROBE的生成。邏輯關(guān)系如圖2所示。
將HDS1、HDS2分別固定為高電平和低電平,這樣HCS就和HSTROBE完全一致。
HSTROBE讀時序如圖3所示。
3.2 接口電路
ARM處理器通過DSP的HPI接口與DSP進行連接的硬件原理如圖4所示(以單板DSP為例)。其中SN74LVTH16245為16位(二個8位)雙向三態(tài)總線收發(fā)器,主要起總線驅(qū)動和方向控制的作用同時也保證在不對HPI口進行操作時數(shù)據(jù)總線鎖閉。AT91RM9200為Atmel公司生產(chǎn)的ARM9為核心的處理器,其中引腳D0-D15為數(shù)據(jù)總線,A2-A8為地址總線的一部分,CS3為片選信號線,當(dāng)ARM對總線地址范圍為0x40000 0000~0x4FFF FFFF的外部設(shè)備進行操作時,會在該引腳產(chǎn)生一個片選信號。同時該信號控制SN74LVTH16245的使能端,避免在讀寫其他地址時對HPI端口造成影響。TMS320C6711D是TI公司生產(chǎn)的DSP,每秒可以完成15億次浮點運算,數(shù)據(jù)處理功能十分強大。引腳D0-D15為數(shù)據(jù)總線。其余端口是HPI接口的控制引腳。
4 驅(qū)動程序設(shè)計
4.1 Linux驅(qū)動程序簡介
在Linux操作系統(tǒng)下有二種方式將驅(qū)動程序裝入操作系統(tǒng)內(nèi)核:一種是直接將驅(qū)動程序編譯進內(nèi)核,另外一種是將驅(qū)動程序構(gòu)建為驅(qū)動程序模塊后采用insmod/rmmod命令將模塊加載內(nèi)核中。由于是在嵌入式系統(tǒng)中進行程序開,所以筆者選用了模塊加載方式。這樣,在整個程序的調(diào)試過程中不必因為修改某處而反復(fù)編譯整個內(nèi)核,只需編譯驅(qū)動程序模塊并重新加載。
本例中Linux下的驅(qū)動程序主要用來完成文件(Linux把外部設(shè)備也認為是文件)的打開、關(guān)閉、讀、寫等操作。也就是對如下結(jié)合的填充。
Static struct file_operations fops=
{open:hpi_open,
release:hpi_release,
mmap:hpi_mmap,
};
其中,open和release完成設(shè)備的打開和關(guān)閉。mmap為內(nèi)存地址映射操作。因為采用的是模塊加載方式,所以還應(yīng)該加上int init_module(void)和void cleanup_module(void)函數(shù),以完成模塊的注冊和卸載。
4.2 驅(qū)動程序中映射的實現(xiàn)
由于驅(qū)動程序的內(nèi)存空間是在內(nèi)核空間中,因此首先應(yīng)解決內(nèi)核空間與用戶空間的交互問題。這里采用最直接的方式將內(nèi)核空間和用戶空間聯(lián)系起來實現(xiàn)映射,即利用remap_page_range內(nèi)核函數(shù)(通過mmap系統(tǒng)調(diào)用實現(xiàn))。
函數(shù)原形如下:
int remap_page_range(unsigned long virt_add,unsigned long phys_add,unsigned long size,pgprot_tprot);
函數(shù)的功能是構(gòu)造用于映射一段物理地址的新頁表。函數(shù)返回的值通常是0或者一個負的錯誤碼。函數(shù)參數(shù)的確切含義如下:
virt_add:重映射起始處的用戶虛擬地址。phys_add:虛擬地址所映射的物理地址。Size:被重映射的區(qū)域的大小。Prot:新VMA(virtual memory area)的“保證(protection)”標(biāo)志。具體定義在源泉文件/include/linux/mm.h中。系統(tǒng)調(diào)用MMAP的程序代碼如下:
static int hpi_mmap(struct file *f,struct vm_area_struct *vma)
vma->vm_flags|=VM_WRITE;
if(remap_page_range(vma->vm_start,((0x40000000)),
vma->vm_end-vma->vm_start,(_pgprot (pgprot_val(pgprot_noncached(vma->vm_page_prot))|
(L_PTE_WRITE|L_PTE_DIRTY))))) //進行映射
{return -1;} //映射失敗
return 0;
}
結(jié)合硬件結(jié)構(gòu)可對函數(shù)remap_page_range()分別填充如下參數(shù):
remap_page_range(vma->vm_start,((0x40000000)),vma->vm_end-vma->vm_start,(__pgprot(pgprot_val(pgprot_noncached(vma->vm_page_prot)) |(L_PTE_WRITE|L_PTE_DIRTY)))))
其中vma為結(jié)合vm_area_struct,在<linux/mm.h>中定義。
應(yīng)用中需要注意以下字段:unsigned long vm_flags應(yīng)該使用標(biāo)志VM_RESERVED,以避免內(nèi)存管理系統(tǒng)將該VMA交換出去。因為要對DSP寫入數(shù)據(jù),所以必須使用標(biāo)志VM_WRITE說明對這一段VMA是允許寫入的。pgport_t vm_page_prot指明了對VMA的保護權(quán)限。由于利用CS3對DSP的HPI接口進行控制,所以應(yīng)用pgprot_noncached禁止高速緩沖。
通過mmap的構(gòu)建就能夠?qū)?nèi)核空間的數(shù)據(jù)映射到用戶空間去,也就是說可以在用戶空間內(nèi)直接對地址為0x4000_0000的內(nèi)存空間進行操作,而該段空間正是DSP的HPI接口所對應(yīng)的地址。
在實際應(yīng)用中,應(yīng)對CS3的低電平脈寬加以控制,方法是在初始化模塊時對ARM的控制寄存器CSR[3]進行調(diào)節(jié)。該寄存器的D0-D6確定了ARM外部總線的時鐘延時周期,D7為等待周期的使能,D12-D14為數(shù)據(jù)寬度。具體定義如下:AT91_SYS->EBI_SMC2_CSR[3]=0x00003083,即使用16bit數(shù)據(jù)寬度,等待周期為3個。當(dāng)ARM主頻為180MHz時,CS3低電平脈寬約為150ns。
4.3 驅(qū)動程序的系統(tǒng)調(diào)用接口
為對處于總線地址0x4000_0000的DSP板進行操作,首先應(yīng)用open打開設(shè)備,該設(shè)備可以通過mknod建立(本例建立的是/dev/hpi)。然后mmap完成映射。
Int dev_hpi_open(str_HPI *ss)
{size_t length=1024;
int i;
if((*ss).hpi_number==0)
{
(*ss).hpi_fd=open("/dev/hpi",O_RDWR);
}
if((*ss).hpi_fd==-1)return -1;
(*ss).hpi_mmap_start =mmap(NULL,length,PROT_READ|PROT_WRITE,MAP_SHARED,((*ss).hpi_fd),0); //獲得映射區(qū)內(nèi)存的起始地址
return 0;
} //dev_hpi_open
mmap的作用是將文件內(nèi)容映射到內(nèi)存中。函數(shù)的原形及各參數(shù)定義如下:
*mmap(void *start,size_length,int prot,int flags,intfd,off_t offset)
start指向欲對應(yīng)的內(nèi)存地址,size-length的含義是要映射的量;prot代表映射區(qū)域的保護方式;flag會影響映射區(qū)域的各種特性;fd為文件描述符;offtoffset代表文件的偏移量,通常設(shè)置為零。
示例程序中的結(jié)構(gòu)體變量ss用來總知各種變量。通過mmap可以獲得映射后的內(nèi)存地址,用(*ss).hpi_mmap_start表示。
一旦獲得了這個起始地址,就能對0x4000_0000起始的總線地址進行操作,因為映射已經(jīng)完成,對(*ss).hpi_mmap_start的操作就是對0x4000_0000起始的總線地址進行操作,而DSP板HPI接口的控制線正是在這個位置。這樣就實現(xiàn)了物理地址和用戶空間的轉(zhuǎn)換。
4.4 用戶程序接口部分
下面以HPI接口讀寫中最復(fù)雜的自增讀方式用戶程序為例說明用戶接口程序的設(shè)計過程。要完成自增讀的操作,對于HPI一側(cè),假設(shè)采用軟件握手的方式。要完成的工作如下:
首先讀HPIC以查詢其中的HRDY位是否為1,如果為1則表示DSP中數(shù)據(jù)已經(jīng)備妥。然后寫HPIA以告訴DSP從什么位置開始進行自增讀。接著將HPIC的FETCH位置1以刷新寫入。再讀HPIC以查詢其中的HRDY位是否為1,如果為1則表示DSP中數(shù)據(jù)已經(jīng)備妥。最后從HPID中讀取數(shù)據(jù)。
對于ARM一側(cè),要對HPIC、HPID、HPIA寄存器進行讀寫必須滿足HPI接口的定義,具體如下(以自增讀為例):
讀前半字節(jié)(高16位)時,HCNTL0=0、HCNTL1=1、HR/W=1、HHWRL=0。
讀后半字節(jié)(低16位)時,HCNTL0=0、HCNTL1=1、HR/W=1、HHWRL=0。
從硬件的原理圖可知,這些HPI的控制口線分別與ARM的一部分地址總線連接。具體為HCNTL0----A2、HCNTL1----A3、HR/W------A4、HHWIL-----A5。
宏定義過程如下:
#define HPIC_R_F(HPI_VA_BASE)*((unsigned long*)((HPI_VA_BASE)+0x00000004+DSPNUMBER))
//讀HPIC第一半字
#define HPIC_R_S(HPI_VA_BASE)*((unsigned long*)((HPI_VA_BASE)+0x0000000C+DSPNUMBER))
//讀HPIC第二半字
等等,只要改變在HPI_BA_BASE基礎(chǔ)上增加的數(shù)字就可以獲取對控制口線的操作。
在這里HPI_VA_BASE將由映射得到的用戶空間虛擬地址代替,所以如果“自增模式讀HPID第一半字”那么就可求滿足前文提到的HCNTL0=0、HCNTL1=1、HR/W=1、HHWRL=0,也就是要滿足地址位A2=0、A3=1、A4=1、A5=0,所以只要在HPI_VA_BASE的基礎(chǔ)上加0x0000_0006就可以了。要注意的是ARM處理器的地址是32位。所以是加上0x0000_0006而不是0x0000_0018。
另外,還有二點需要說明:
通過改變宏定義中的DSPNUMBER常量可以控制地址總線A6、A7、A8。通過這3個總線組合并通過簡單地址譯碼電路就可以完成對多塊DSP板的讀寫。在硬件電路中可以定義為0。
A4(HR/W)同時還用做SN74LVTH16245的方向控制。讀的時候A4=1,此時SN74LVTH16245的數(shù)據(jù)從A-->B;反之,則從B-->A。
下面給出程序中的自增讀和注釋部分:
int dev_hpi_auto1(str_HPI *ss)
{volatile unsigned long dsp_addr_hign_read_auto;//定義各種中間變量
volatile unsigned long dsp_addr_low_read_auto;
volatile unsigned long dsp_data_hign_read_auto;
volatile unsigned long dsp_data_low_read_auto;
volatile unsigned long dsp_add_temp;
int i;
volatile unsigned long data_length;
//---read hpic----the host polls the HPIC for HRDY=1
volatile unsigned long polltest;
polltest=HPIC_R_F((*ss).hpi_mmap_start);
while((polltest&0x00000008)!=0x00000008)
{polltest=HPIC_R_F((*ss).hpi_mmap_start);
}
dsp_add_temp=((*ss).hpi_dsp_add);//從應(yīng)用程序傳過來的參數(shù),指明希望從DSP的哪一個地址讀起
dsp_addr_low_read_auto=((dsp_add_temp)&0x0000ffff)+((dsp_add_temp)<<16); //完成數(shù)據(jù)轉(zhuǎn)換
dsp_addr_hign_read_auto=((dsp_add_temp)&0xffff0000)+((dsp_add_temp)>>16);
//---write dsp s addr to HPIA
HPIA_W_F ((*ss).hpi_mmap_start)=(dsp_addr_hign_read_auto);
HPIA_W_S((*ss).hpi_mmap_start)=(dsp_addr_low_read_auto);
//--------write hpic----------to FETCH bit
HPIC_W_F((*ss).hpi_mmap_start)=0xfff8fff8;
HPIC_W_S((*ss).hpi_mmap_start)=0xfff8fff8;
//---read dsp s data from HPID,autoincrement mode
data_length=(*ss).hpi_dsp_data_length;//從應(yīng)用程序傳過來的參數(shù),指明期望讀取多少個字
for(i=0;i<=data_length;i++)
{//---read hpic----the host polls the HPIC for HRDY=1 again
polltest=HPIC_R_F((*ss).hpi_mmap_start);
while((polltest&0x00000008)!=0x00000008)
{polltest=HPIC_R_F((*ss).hpi_mmap_start);
}
dsp_data_hign_read_auto =HPID_R_F_A((*ss).hpi_mmap_start); //讀第一個半字。
dsp_data_low_read_auto =HPID_R_S_A((*ss).hpi_mmap_start); //第二個個半字
{(*ss).buffer [(i)]=(dsp_data_hign_read_auto&oxffff0000)+(dsp_data_low_read_auto&0x0000ffff);
//數(shù)據(jù)拼接,放入結(jié)構(gòu)體,回傳給調(diào)用的用戶程序。
}
}
} //dev_hpi_read_auto(str_HPI *ss)
5 結(jié)束語
本文通過一個實例說明了如何實現(xiàn)在Linux操作系統(tǒng)下ARM體系結(jié)構(gòu)的處理器與DSP的數(shù)據(jù)通信。給出了接口部分的硬件處理和部分驅(qū)動程序。
在某款智能儀表的研發(fā)過程中,給出一個簡單的地址譯碼電路對二塊(或更多)DSP板進行交替讀寫,并以自增讀方式進行操作,當(dāng)ARM主頻為180MHz,DSP主頻為125MHz時,對DSP數(shù)據(jù)的讀寫速度可以達到每毫秒1k的32位字。