當前位置:首頁 > 電源 > 電源電路
[導(dǎo)讀]Flyback的次級側(cè)整流二極管的RC尖峰吸收問題,覺得大家在處理此類尖峰問題上仍過于傳統(tǒng),其實此處用RCD吸收會比用RC 吸收效果更好,用RCD吸收,其整流管尖峰電壓可以壓得更

Flyback的次級側(cè)整流二極管的RC尖峰吸收問題,覺得大家在處理此類尖峰問題上仍過于傳統(tǒng),其實此處用RCD吸收會比用RC 吸收效果更好,用RCD吸收,其整流管尖峰電壓可以壓得更低(合理的參數(shù)搭配,可以完全吸收,幾乎看不到尖峰電壓),而且吸收損耗也更小。

 

整流管尖峰吸收電路

 

傳輸文件進行PCB打樣

整流二極管電壓波形(RC吸收)

 

整流管尖峰吸收電路

 

傳輸文件進行PCB打樣

整流二極管電壓波形(RCD吸收)

從這兩張仿真圖看來,其吸收效果相當,如不考慮二極管開通時高壓降,可以認為吸收已經(jīng)完全。

試驗過后,你應(yīng)該會很驚喜,二極管可以采用貼片的(快速開關(guān)二極管,如果參數(shù)合適,1N4148不錯),電阻電容都可以用貼片的。

此處的RCD吸收設(shè)計,可以這樣認為:為了吸收振蕩尖峰,C應(yīng)該有足夠的容值,已便在吸收尖峰能量后,電容上的電壓不會太高,為了平衡電容上的能量,電阻R需將存儲在電容C中的漏感能量消耗掉,所以理想的參數(shù)搭配,是電阻消耗的能量剛好等于漏感尖峰中的能量(此時電容C端電壓剛好等于Uin/N+Uo),因為漏感尖峰能量有很多不確定因素,計算法很難湊效,所以下面介紹一種實驗方法來設(shè)計

1.選一個大些的電容(如100nF)做電容C,D選取一個夠耐壓>1.5*(Uin/N+Uo)的超快恢復(fù)二極管(如1N4148);

2.可以選一個較小的電阻10K,1W電阻做吸收的R;

3.逐漸加大負載,并觀察電容C端電壓與整流管尖峰電壓:

如C上電壓紋波大于平均值的20%,需加大C值;

如滿載時,C端電壓高于Uin/N+Uo太多(20%以上,根據(jù)整流管耐壓而定),說明吸收太弱,需減小電阻R;

如滿載時,C上電壓低于或等于Uin/N+Uo,說明吸收太強,需加大電阻R;

如滿載時C上電壓略高于Uin/N+Uo(5%~10%,根據(jù)整流管耐壓而定),可視為設(shè)計參數(shù)合理;

在不同輸入電壓下,再驗證參數(shù)是否合理,最終選取合適的參數(shù)。

我們再看看兩種吸收電路對應(yīng)的吸收損耗問題(以Flyback為例):

采用RC吸收:C上的電壓在初級MOS開通后到穩(wěn)態(tài)時的電壓為Vo+Ui/N,(Vo為輸出電壓,Ui輸入電壓,N為變壓器初次級匝比),因為我們設(shè)計的RC的時間參數(shù)遠小于開關(guān)周期,可以認為在一個吸收周期內(nèi),RC充放電能到穩(wěn)態(tài),所以每個開關(guān)周期,其吸收損耗的能量為:次級漏感尖峰能量+RC穩(wěn)態(tài)充放電能量,近似為RC充放電能量=C*(Vo+Ui/N)^2(R上消耗能量,每個周期充一次放一次),所以RC吸收消耗的能量為 fsw*C*(Vo+Ui/N)^2,以DC300V輸入,20V輸出,變壓器匝比為5,開關(guān)頻率為100K,吸收電容為2.2nF為例,其損耗的能量為2.2N*(20+300/5)^2*100K=1.4w ;

采用RCD吸收,因為采用RCD吸收,其吸收能量包括兩部分,一部分是電容C上的DC能量,一部分就是漏感能量轉(zhuǎn)換到C上的尖峰能量,因為漏感非常小,其峰值電流由不可能太大,所以能量也非常有限,相對來講,只考慮R消耗的直流能量就好了,以上面同樣的參數(shù),C上的直流電壓為Vo+Ui/N=80V,電阻R取47K,其能量消耗為0.14W,相比上面的1.4W,“低碳”效果非凡。

再談?wù)勥@兩種吸收電路的特點及其他吸收電路:

RC吸收:吸收尖峰的同時也將變壓器輸出的方波能量吸收,吸收效率低,損耗大,但電路簡單,吸收周期與開關(guān)頻率一致,可以用在低待機功耗電路中;

RCD吸收:適合所有應(yīng)用RC吸收漏感尖峰的地方(包括正激、反激、全橋、半橋等拓撲)吸收效率較RC高,但是存在一直消耗電容(一般比較大)儲存的能量的情況,不適合應(yīng)用在低待機功耗電路中(包括初級MOS管的漏感吸收);

再討論一下ZENER吸收:可以應(yīng)用于初級MOS漏感尖峰吸收,次級整流管電壓尖峰吸收,還可應(yīng)用于低待機功耗電路,吸收效率最高,成本高,但ZENER穩(wěn)壓參數(shù)變化較大,需仔細設(shè)計。

整流管的反向恢復(fù)只會出現(xiàn)在連續(xù)工作模式中,斷續(xù)工作模式的電源拓撲,都不會存在整流管的反向恢復(fù)問題;

整流管的電容效應(yīng)及次級雜散電容與次級漏感會引起振蕩,這種振蕩在整流管大的dv/dt(變壓器連整流管端電壓變化率)和二極管反向恢復(fù)電流(連續(xù)模式)影響下,表現(xiàn)為變壓器輸出端+輸出電壓通過次級漏感與整流管等雜散電容的諧振,從而引起整流管反向電壓尖峰。

通俗來講,二極管的反向恢復(fù)指正在導(dǎo)通的二極管從導(dǎo)通狀態(tài)轉(zhuǎn)換為反向截至狀態(tài)的一個動態(tài)過程,這里有兩個先決條件:二極管在反向截至之前要有一定正向電流(電流大小影響到反向恢復(fù)的最大峰值電流及恢復(fù)時間,本來已截至的狀態(tài)不在此列,故只有連續(xù)模式才存在反向恢復(fù)問題);為滿足二極管快速進入截至狀態(tài),會有一個反向電壓加在二極管兩端(這個反向電壓的大小也影響已知二極管的反向恢復(fù)電流及恢復(fù)時間)。所以看有無反向恢復(fù)問題,可以對比其是否具備這兩個條件。

準諧振電路的好處是將斷續(xù)模式整流二極管最大的端變化電壓N*Uo+Uo變成N*Uo-Uo,減小了其整流二極管在初級MOS管開通時的電壓變化率,從而減少了漏感振蕩的激勵源,降低其產(chǎn)生的振蕩尖峰,如幅值不影響整流管耐壓安全,完全可以省去RC等吸收電路。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉