正12V轉(zhuǎn)負(fù)12V電路
本電路采用TPS5340降壓芯片。
圖1顯示了一款精簡型降壓—升壓電路,以及電感上出現(xiàn)的開關(guān)電壓。這樣一來該電路與標(biāo)準(zhǔn)降壓轉(zhuǎn)換器的相似性就會頓時(shí)明朗起來。實(shí)際上,除了輸出電壓和接地相反以外,它和降壓轉(zhuǎn)換器完全一樣。這種布局也可用于同步降壓轉(zhuǎn)換器。這就是與降壓或同步降壓轉(zhuǎn)換器端相類似的地方,因?yàn)樵撾娐返倪\(yùn)行與降壓轉(zhuǎn)換器不同。
FET 開關(guān)時(shí)出現(xiàn)在電感上的電壓不同于降壓轉(zhuǎn)換器的電壓。正如在降壓轉(zhuǎn)換器中一樣,平衡伏特-微秒 (V-μs) 乘積以防止電感飽和是非常必要的。當(dāng) FET 為開啟時(shí)(如圖 1 所示的 ton 間隔),全部輸入電壓被施加至電感。這種電感“點(diǎn)”側(cè)上的正電壓會引起電流斜坡上升,這就帶來電感的開啟時(shí)間 V-μs 乘積。FET 關(guān)閉 (toff) 期間,電感的電壓極性必須倒轉(zhuǎn)以維持電流,從而拉動點(diǎn)側(cè)為負(fù)極。電感電流斜坡下降,并流經(jīng)負(fù)載和輸出電容,再經(jīng)二極管返回。電感關(guān)閉時(shí)V-μs 乘積必須等于開啟時(shí) V-μs 乘積。由于 Vin 和 Vout 不變,因此很容易便可得出占空比 (D) 的表達(dá)式:D=Vout/(Vout " Vin)。這種控制電路通過計(jì)算出正確的占空比來維持輸出電壓穩(wěn)壓。上述表達(dá)式和圖 1 所示波形均假設(shè)運(yùn)行在連續(xù)導(dǎo)電模式下。
圖 1 降壓—升壓電感要求平衡其伏特-微秒乘積
有趣的是,連接輸入電容返回端的方法有兩種,其會影響輸出電容的 rms 電流。典型的電容布局是在 +Vin 和 Gnd 之間,與之相反,輸入電容可以連接在 +Vin和 "V 之間。利用這種輸入電容配置可降低輸出電容的rms電流。然而,由于輸入電容連接至 "Vout,因此 "Vout 上便形成了一個(gè)電容性分壓器。這就在控制器開始起作用以前,在開啟時(shí)間的輸出上形成一個(gè)正峰值。為了最小化這種影響,最佳的方法通常是使用一個(gè)比輸出電容要小得多的輸入電容,請參見圖 2 所示的電路。輸入電容的電流在提供 dc 輸出電流和吸收平均輸入電流之間相互交替。rms 電流電平在最高輸入電流的低輸入電壓時(shí)最差。因此,選擇電容器時(shí)要多加注意,不要讓其 ESR 過高。陶瓷或聚合物電容器通常是這種拓?fù)漭^為合適的選擇。
圖 2 降壓控制器在降壓—升壓中的雙重作用