監(jiān)控基站功率放大器的優(yōu)化方案
摘要: 蜂窩通信的發(fā)展與先進(jìn)調(diào)制方案的關(guān)系日益密切。在最新一代(2.5G和3G)基站中,設(shè)計(jì)策略包括實(shí)現(xiàn)高線性度同時(shí)將功耗降至最低的方法。例如,通過監(jiān)控基站功率放大器(PA)的性能,可使PA的輸出功率最大化,同時(shí)獲得最佳線性度和效率。幸運(yùn)的是,采用針對(duì)該目的量身定做的分立集成電路(IC),就可以很簡(jiǎn)單地監(jiān)控PA的輸出電平。
關(guān)鍵字: 蜂窩通信, 功率放大器(PA), DAC, ADC
蜂窩通信的發(fā)展與先進(jìn)調(diào)制方案的關(guān)系日益密切。在最新一代(2.5G和3G)基站中,設(shè)計(jì)策略包括實(shí)現(xiàn)高線性度同時(shí)將功耗降至最低的方法。例如,通過監(jiān)控基站功率放大器(PA)的性能,可使PA的輸出功率最大化,同時(shí)獲得最佳線性度和效率。幸運(yùn)的是,采用針對(duì)該目的量身定做的分立集成電路(IC),就可以很簡(jiǎn)單地監(jiān)控PA的輸出電平。
無線基站在功耗、線性度、效率和成本方面的性能主要取決于信號(hào)鏈中的PA。硅橫向擴(kuò)散金屬氧化物半導(dǎo)體(LDMOS)晶體管所具有的低成本和大功率性能優(yōu)勢(shì),非常適合于現(xiàn)代蜂窩基站PA設(shè)計(jì)。線性度、效率和增益的內(nèi)在平衡決定著LDMOS PA晶體管的最佳偏置條件。
基于環(huán)保原因,基站電源效率的優(yōu)化也是電信業(yè)各公司的重要考慮事項(xiàng)。為降低基站的總能耗以減小它們對(duì)環(huán)境的影響,業(yè)界正在進(jìn)行不懈的努力?;久刻斓倪\(yùn)行成本主要源自電能的消耗,其中,PA消耗的電能可能就占了一半以上。因此,優(yōu)化PA的電源效率可提高基站的運(yùn)行性能,有助于保護(hù)環(huán)境和提高經(jīng)濟(jì)效益。
控制漏極偏置電流,使其在溫度和時(shí)間變化時(shí)保持恒定,這能夠顯著提高PA的總體性能,同時(shí)確保其輸出功率水平保持在規(guī)定范圍內(nèi)。一種控制柵極偏置電流的方法是在測(cè)試/評(píng)估階段用電阻分壓器固定柵極電壓來優(yōu)化柵極電壓。
雖然這種固定柵極電壓解決方案頗具成本效益,但它有一個(gè)大缺點(diǎn),就是沒有考慮到環(huán)境變化、制造的延伸性或電源電壓變化。利用一個(gè)高分辨率數(shù)模轉(zhuǎn)換器(DAC)或一個(gè)較低分辨率的數(shù)字電位計(jì)來動(dòng)態(tài)控制PA柵極電壓,可以對(duì)輸出功率進(jìn)行更好的控制。利用用戶可編程?hào)艠O電壓,即使電壓、溫度和其它環(huán)境參數(shù)發(fā)生變化,PA也能夠保持最佳偏置條件。
影響PA漏極偏置電流的兩個(gè)主要因素是PA的高壓供電線變化和片上溫度的變化。PA晶體管的漏極電壓很容易受高壓供電線變化的影響。通過采用一個(gè)高壓側(cè)電流(I)檢測(cè)放大器來精確測(cè)量高壓供電線上的電流,就可以監(jiān)控PA晶體管的漏極電壓。滿量程電流讀數(shù)由一個(gè)外部檢測(cè)電阻(R)來設(shè)定。在監(jiān)控極高電流的應(yīng)用中,這個(gè)檢測(cè)電阻必須能消耗掉I2R的損耗。如果超出該電阻的額定功耗,電阻值可能發(fā)生偏移或電阻完全失效,這將造成其兩端的差分電壓超過絕對(duì)最大額定值。
用電流傳感器輸出表示的被測(cè)電壓可被多路復(fù)用輸入到模數(shù)轉(zhuǎn)換器(ADC)中,以產(chǎn)生監(jiān)控所需的數(shù)字?jǐn)?shù)據(jù)。需注意確保電流傳感器的輸出電壓應(yīng)盡可能接近ADC的滿量程模擬輸入范圍。通過對(duì)高壓線的持續(xù)監(jiān)控,當(dāng)檢測(cè)到供電線上出現(xiàn)浪涌電壓時(shí),功率放大器可以重新調(diào)節(jié)其柵極電壓,從而保持最佳的偏置條件。
LDMOS晶體管的漏源電流IDS有兩個(gè)與溫度有關(guān)的項(xiàng),即有效電子遷移率μ和閾值電壓Vth:
閾值電壓和有效電子遷移率隨溫度升高而降低。因此,溫度的變化將引起輸出功率的變化。利用一個(gè)或多個(gè)分立溫度傳感器測(cè)量PA的溫度,就可以監(jiān)控電路板上的溫度變化。有多種分立式溫度傳感器可滿足系統(tǒng)要求,從各種模擬電壓輸出溫度傳感器到具有單線、I2C總線和串行外設(shè)接口(SPI)控制的各種數(shù)字輸出溫度傳感器。
將溫度傳感器的輸出電壓多路復(fù)用輸入到ADC中,從而使該溫度數(shù)據(jù)轉(zhuǎn)換為數(shù)字?jǐn)?shù)據(jù)以供監(jiān)控使用(圖1)。根據(jù)系統(tǒng)配置不同,電路板上可能需要使用多個(gè)溫度傳感器。例如,如果使用一個(gè)以上的PA或者前端需要多個(gè)前置驅(qū)動(dòng)器,則對(duì)每一個(gè)放大器使用一個(gè)溫度傳感器可以更好地控制系統(tǒng)。這種情況下,需要一個(gè)多通道ADC來轉(zhuǎn)換溫度傳感器的模擬輸出。目前,各類ADC一般都具有內(nèi)置超量程報(bào)警功能,當(dāng)輸入超過設(shè)定的限值時(shí)就會(huì)發(fā)出警告。在PA信號(hào)鏈中,這種功能對(duì)監(jiān)控溫度和電流傳感器讀數(shù)意義重大。上限和下限均可以預(yù)先設(shè)定,只有超出這些限度時(shí)才發(fā)出警告信號(hào)。
圖1:該模塊圖顯示了使用一個(gè)ADT75溫度傳感器和ADM4073電流傳感器多路復(fù)用到ADC模型的簡(jiǎn)化控制系統(tǒng)。
這類設(shè)計(jì)一般還配有遲滯寄存器。該寄存器類型決定了超出限度時(shí)警告標(biāo)識(shí)的復(fù)位點(diǎn)。遲滯寄存器可以防止高噪聲的溫度或電流傳感器讀數(shù)連續(xù)觸發(fā)警告標(biāo)識(shí)。例如,ADI公司的AD7992、AD7994和AD7998 12位低功率I2C接口ADC就帶有這種超量程限值指示器,同時(shí)分別提供了2、4、8通道處理能力。