在電源設(shè)計(jì)中加入PFC
在2005年最新的IEC61000-3-2標(biāo)準(zhǔn)生效以前,大多數(shù)PC、顯示器和電視機(jī)的電源在采用110至120V,60Hz的單相交流電供電時(shí)都會(huì)產(chǎn)生過(guò)量的電源線諧波。在這個(gè)更新更嚴(yán)格的IEC標(biāo)準(zhǔn)的推動(dòng)下,電源廠商開始通過(guò)增加功率因數(shù)校正(PFC)來(lái)最大限度地減少電源線諧波。
為了解IEC61000-3-2的影響,最好先了解一下直接穿過(guò)電源線放置負(fù)載電阻(R)的理想情況(圖1)。在這種情況下,正弦線路電流IAC與線路電壓VAC成正比,且與該電壓同相。因此:
圖1
這意味著,對(duì)于效率最高的無(wú)失真電源線操作來(lái)講,所有的負(fù)載都應(yīng)作為有效電阻(R),而消耗和提供的功率是RMS線路電壓和線路電流的乘積。
不過(guò),許多電子系統(tǒng)的負(fù)載都需要交流到直流的轉(zhuǎn)換。在這種情況下,典型電源的電源線上的負(fù)載由一個(gè)驅(qū)動(dòng)電容的橋式二極管組成(圖2)。它是電源線的非線性負(fù)載,因?yàn)榇藰蚴秸髌鞯膬蓚€(gè)二極管都位于輸入交流電源線電壓的正半周期或負(fù)半周期的直接電源通路中。此非線性負(fù)載僅在正弦電源線電壓的峰值期間汲取電源線電流,這樣會(huì)產(chǎn)生“多峰”輸入電源線電流,從而引起電源線諧波(圖3)。
圖2
圖3
非線性負(fù)載可使諧波大小與線路頻率下的基本諧波電流具有可比性。圖4顯示了相對(duì)于線路頻率下的基本諧波大小進(jìn)行標(biāo)準(zhǔn)化的高階諧波電流大小。不過(guò),只有圖1中給出的在與線路頻率相同的頻率下且與電源線電壓同相的諧波電流(在此案例中為線路頻率下的基本諧波)對(duì)提供給負(fù)載的平均功率起作用。這些諧波電流會(huì)影響同一電力線上的其他設(shè)備的工作情況。
圖4
電源線諧波的大小取決于電源的功率因數(shù),功率因數(shù)的變化范圍為0至1。功率因數(shù)值越低,產(chǎn)生的諧波更大,功率因數(shù)值越高,產(chǎn)生的諧波越小。功率因數(shù)(PF)的定義如下:
其中,P = 實(shí)際功率(單位:瓦特);IRMS = RMS線路電流;VRMS = RMS線路電壓;VRMS * IRMS =視在功率(單位:伏特-安培/VA)。
PF還等于線路電流與電壓之間的相角(θ)的余弦值;從這個(gè)角度來(lái)講,式2可以重新寫成以下形式:
Cosθ的值是0至1之間的數(shù)字。
如果θ = 0°,則cosθ = 1且P = IRMS * VRMS,這與電阻負(fù)載的情況相同。當(dāng)PF為1時(shí),負(fù)載消耗電源提供的所有能量。
如果θ = 90°,則cosθ = 0;因此負(fù)載收到的功率為零。提供功率的發(fā)電機(jī)必須提供IRMS * VRMS的功率(即使沒(méi)有功率用于做有用功)。
因此,對(duì)于圖2中的二極管橋式電容器案例,式2的PF定義中剩下的唯一一個(gè)變量就是線路電流IRMS,因?yàn)榫€路電壓(VRMS)已通過(guò)電源線發(fā)電機(jī)固定至120V。電源線為提供給負(fù)載的給定平均功率而汲取的IRMS越高,功率因數(shù)(PF)就越低。圖2中的AC-DC轉(zhuǎn)換器采用120V的交流電源線電壓供電,并向負(fù)載提供600W的功率,同時(shí)汲取10A的線路電流,該轉(zhuǎn)換器的PF = 0.5。不過(guò),圖1中PF為1的電阻負(fù)載僅從電源線中汲取5A的電流(該負(fù)載從120V交流電源線中汲取600W的功率)。
電力公司會(huì)因低PF負(fù)載而遭受損失,這是因?yàn)殡娏颈仨毺峁└叩陌l(fā)電能力,從而滿足由于負(fù)載的低PF而產(chǎn)生的更大的線路電流的要求。不過(guò)電力公司只會(huì)按提供的平均功率(單位為瓦特)向用戶收費(fèi)——而不是按產(chǎn)生的伏安收費(fèi)。
伏安與瓦特之間的這種差別要么以發(fā)熱的形式出現(xiàn),要么反過(guò)來(lái)體現(xiàn)到交流電源線上。校正這種情況的最常見方法是采用功率因數(shù)校正。
功率因數(shù)校正
IEC-61000-3-2標(biāo)準(zhǔn)定義了給定功率級(jí)別允許的最大諧波電流。該標(biāo)準(zhǔn)1995年和2001年的初始版本已被2005年的版本3更新(請(qǐng)參見表)。2005年版本3對(duì)每相耗費(fèi)的功率在75至600W之間,耗費(fèi)的電流≤16A的(D類)PC、顯示器和電視機(jī)的電源線諧波電流提出了更加嚴(yán)格的要求。為滿足這些要求,設(shè)計(jì)工程師必須在D類電源中采用有源功率因數(shù)校正(PFC)。
許多PFC電路都采用升壓轉(zhuǎn)換器。傳統(tǒng)的PFC升壓轉(zhuǎn)換器中的一個(gè)限制因素是它只能由整流后的交流電源線供電,而這種電源線涉及兩級(jí)功率處理(圖5)。轉(zhuǎn)換器產(chǎn)生的波形更好地說(shuō)明了這個(gè)問(wèn)題(圖6)。此外,無(wú)法通過(guò)簡(jiǎn)單有效的方法在傳統(tǒng)升壓轉(zhuǎn)換器中引入隔離。
圖5
圖6
采用升壓轉(zhuǎn)換器的全橋擴(kuò)展(然后作為PFC轉(zhuǎn)換器進(jìn)行控制)是一種引入隔離的方法(圖7)。不過(guò),這種方法需要在初級(jí)增加四個(gè)晶體管,在次級(jí)增加四個(gè)二極管整流器(晶體管和整流器均在100kHz的開關(guān)頻率下工作),從而增加了復(fù)雜性。此外,四個(gè)增加的二極管位于以50/60Hz的線路頻率工作的輸入橋式整流器中。
圖7:作為PFC控制器控制的升壓轉(zhuǎn)換器的全橋擴(kuò)展可以提供隔離。
除了低頻正弦電流之外,線路電流還將在高開關(guān)頻率下疊加輸入電感紋波電流,這需要通過(guò)交流電源線上的一個(gè)額外的高頻濾波器進(jìn)行濾波。由于增加了12個(gè)在硬開關(guān)模式下工作的開關(guān),因此造成了較高的傳導(dǎo)和開關(guān)損耗。據(jù)報(bào)道,這種兩級(jí)方法及輔助開關(guān)器件的最高效率為87%。
由于升壓直流轉(zhuǎn)換增益的影響,這種方法還會(huì)出現(xiàn)啟動(dòng)問(wèn)題。它需要額外的電路對(duì)輸出電容進(jìn)行預(yù)充電,以便轉(zhuǎn)換器能夠啟動(dòng)。
要實(shí)現(xiàn)1kW或1kW以上的功率,設(shè)計(jì)工程師經(jīng)常采用三級(jí)方法(圖8)。在圖8中,標(biāo)準(zhǔn)升壓PFC轉(zhuǎn)換器和隔離降壓轉(zhuǎn)換器位于輸入的橋式整流器之后。這總共需要14個(gè)開關(guān)。其中至少六個(gè)開關(guān)為高壓開關(guān),這樣就進(jìn)一步降低了效率,增加了成本。盡管如此,在使用最好開關(guān)器件的情況下,最高效率能夠達(dá)到90%左右,該頻率仍比兩級(jí)方法的效率要高。
圖8:至少1kW的電源一般采用三級(jí)PFC轉(zhuǎn)換器。
如要實(shí)現(xiàn)中低功率,則有一個(gè)替代方法,該方法通過(guò)采用前向轉(zhuǎn)換器作為隔離級(jí)來(lái)減少開關(guān)數(shù)量(圖9)。在采用這個(gè)方法之前,必須注意這一點(diǎn):雖然現(xiàn)在有10個(gè)開關(guān),但與全橋式方案相比,正向轉(zhuǎn)換器中的四個(gè)開關(guān)器件向初級(jí)和次級(jí)開關(guān)施加了更大的電壓應(yīng)力。此外,全橋式方案還需要四個(gè)磁性元器件。
圖9:此PFC電路采用隔離正向轉(zhuǎn)換器,這是一種通常在中小功率應(yīng)用中保留的設(shè)置。
無(wú)橋PFC轉(zhuǎn)換器
Teslaco公司總裁Slobodan Cuk博士開辟了這個(gè)領(lǐng)域的新天地,他研發(fā)出一種直接由交流電源線供電的無(wú)橋PFC轉(zhuǎn)換器(正在申請(qǐng)專利)。該轉(zhuǎn)換器據(jù)稱是首款真正的單級(jí)無(wú)橋AC-DC PFC轉(zhuǎn)換器。
為了實(shí)現(xiàn)這一壯舉,Cuk采用了一種新的開關(guān)功率轉(zhuǎn)換方法,這種方法稱為“混合開關(guān)”(hybrid-switching)。該方法采用僅包含三個(gè)開關(guān)的轉(zhuǎn)換器拓?fù)洌阂粋€(gè)可控開關(guān)S和兩個(gè)無(wú)源整流器開關(guān)(CR1和CR2)(圖10)。輸入交流電壓為正極或負(fù)極時(shí),兩個(gè)整流器根據(jù)主開關(guān)(S)的狀態(tài)作出相應(yīng)的導(dǎo)通和關(guān)斷操作。該拓?fù)溆梢粋€(gè)與輸入串聯(lián)的電感、浮動(dòng)的能量傳輸電容(作為開關(guān)周期部件的諧振電容器)和一個(gè)諧振電感組成。
由于基于PWM方波開關(guān)的傳統(tǒng)轉(zhuǎn)換器采用電感和電容器,因此它們需要互補(bǔ)的成對(duì)開關(guān)。當(dāng)一個(gè)開關(guān)導(dǎo)通時(shí),其互補(bǔ)的開關(guān)就關(guān)斷,反之亦然。因此,只允許采用偶數(shù)個(gè)開關(guān),而新型混合開關(guān)PFC轉(zhuǎn)換器可以采用奇數(shù)個(gè)(3個(gè))開關(guān)。
在這種設(shè)置中,這樣的互補(bǔ)開關(guān)是不存在的。一個(gè)有源開關(guān)S單獨(dú)控制兩個(gè)二極管,其角色會(huì)根據(jù)交流輸入電壓的極性自動(dòng)發(fā)生變化。例如,交流輸入電壓為正極時(shí),CR1在開關(guān)S的導(dǎo)通間隔導(dǎo)電。而交流輸入電壓為負(fù)極時(shí),CR1在開關(guān)S的關(guān)斷間隔導(dǎo)電。此外,CR2還根據(jù)開關(guān)S的狀態(tài)和輸入交流電壓極性自動(dòng)作出反應(yīng)。交流輸入電壓為正極時(shí),CR2在開關(guān)S的關(guān)斷間隔導(dǎo)電;交流輸入電壓為負(fù)極時(shí),CR2在開關(guān)S的導(dǎo)通間隔導(dǎo)電。
因此,三個(gè)開關(guān)可以在輸入交流線路電壓的正半周期和負(fù)半周期的整個(gè)周期內(nèi)工作。因此,這種真正的無(wú)橋PFC轉(zhuǎn)換器無(wú)需全橋式整流器也可以工作,這是因?yàn)檗D(zhuǎn)換器拓?fù)鋵?shí)際上執(zhí)行了交流線路整流。最終在輸入交流線路電壓的正負(fù)半周期實(shí)現(xiàn)了同樣的直流輸出電壓。消除全橋式整流器相當(dāng)于直接消除了損耗(特別是對(duì)于85V的低電壓線路而言)。
初級(jí)的有源開關(guān)S在開關(guān)頻率下調(diào)制和工作,該開關(guān)頻率比線路頻率高三個(gè)數(shù)量級(jí)(比如,開關(guān)頻率為50kHz時(shí),交流線路頻率為50/60Hz)。占空比(D)可以通過(guò)控制開關(guān)的導(dǎo)通時(shí)間和所有的穩(wěn)態(tài)指標(biāo)(比如,直流轉(zhuǎn)換率)來(lái)定義,電感L的直流電流根據(jù)D來(lái)表示。
隨后,全波輸入線路電壓和輸入線路電流被感測(cè)后作為輸入發(fā)送至無(wú)橋PFC IC控制器。控制器對(duì)初級(jí)的開關(guān)S進(jìn)行調(diào)制,強(qiáng)制輸入線路電流與輸入線路電壓成正比,從而提供理想的整功率因數(shù)。
該P(yáng)FC轉(zhuǎn)換器真正出眾的特性是流電隔離擴(kuò)展可以保持圖10中的三個(gè)開關(guān)組成的轉(zhuǎn)換器的簡(jiǎn)單性。諧振電容器基本上分成了兩個(gè)串聯(lián)的電容器,隔離變壓器被插在它們分離的位置。
數(shù)字控制PFC
用于電源的低成本、高性能數(shù)字控制器的出現(xiàn)使得這類控制器開始應(yīng)用于PFC設(shè)計(jì)。數(shù)字控制器可提供可編程配置、非線性控制、低器件數(shù)和實(shí)現(xiàn)通常使用模擬方法很難實(shí)現(xiàn)的復(fù)雜功能的能力。
如今的大多數(shù)數(shù)字功率控制器(比如TI的UCD3020)都具有集成式功率控制外設(shè)和功率管理內(nèi)核,包括數(shù)字環(huán)路補(bǔ)償器、快速模數(shù)轉(zhuǎn)換器(ADC)、帶內(nèi)置死區(qū)時(shí)間的高分辨率數(shù)字脈寬調(diào)制器(DPWM)、低功耗微控制器等。這些控制器支持無(wú)橋PFC等復(fù)雜的高性能電源設(shè)計(jì)。
例如,無(wú)橋PFC可以整合兩個(gè)直流-直流升壓電路:L1、D1、S1和L2、D2、S2(圖11)。D3和D4是慢速恢復(fù)二極管。單獨(dú)感測(cè)以內(nèi)部電源地為基準(zhǔn)的線路和中性點(diǎn)電壓可實(shí)現(xiàn)輸入交流電壓的測(cè)量。通過(guò)比較感測(cè)的線路和中性信號(hào),固件可以判斷是正半周期還是負(fù)半周期。在正半周期時(shí),第一個(gè)直流-直流升壓電路(L1-S1-D1)是有源電路,升壓電流通過(guò)D4返回至交流中性線。在負(fù)半周期時(shí),L2-S2-D2為有源電路,升壓電路通過(guò)D3返回至交流電源線。
圖11:數(shù)字控制的無(wú)橋PFC由兩相升壓電路組成,但是每次只有一個(gè)相位為有源相位。
與采用相同的功率器件的傳統(tǒng)單相PFC相比,無(wú)橋PFC和單相PFC應(yīng)具有相同的開關(guān)損耗。不過(guò),無(wú)橋PFC電流僅通過(guò)一個(gè)慢速二極管(正半周期時(shí)為D4,負(fù)半周期時(shí)為D3),而不是同時(shí)通過(guò)兩個(gè)二級(jí)管。因此,效率的提升依靠的是一個(gè)二極管與兩個(gè)二極管之間的傳導(dǎo)損耗之差。
無(wú)橋PFC的效率還可以通過(guò)全面導(dǎo)通不活動(dòng)的開關(guān)來(lái)提升。比如,在正周期時(shí),S2可以全面導(dǎo)通,而S1由PWM信號(hào)控制。由于在流動(dòng)的電流低于某個(gè)值時(shí)MOSFET S2上的電壓降可能低于D4,返回電流會(huì)部分或全部流過(guò)L1-D1-RL-S2-L2,然后返回至交流電源。這就降低了傳導(dǎo)損耗,從而提高了電路效率(特別是在輕負(fù)載下的電路效率)。同樣,在負(fù)周期時(shí),S1全面導(dǎo)通,而S2則進(jìn)行開關(guān)控制。
在相同的交流電壓和直流輸出電壓下,輸出電流與電壓回路輸出成正比。在此基礎(chǔ)上,頻率和輸出電壓可以進(jìn)行相應(yīng)地調(diào)整。固件實(shí)現(xiàn)數(shù)字控制器中的電壓回路。由于輸出已知,因此很容易就能以低于模擬方法的成本實(shí)現(xiàn)該功能。
更多的數(shù)字PFC控制器
ADI公司最近發(fā)布了ADP1047和ADP1048數(shù)字PFC控制器,這兩款控制器還可以提供輸入電能計(jì)量和浪涌電流控制。ADP1047用于單相PFC應(yīng)用,而ADP1048則針對(duì)交錯(cuò)式和無(wú)橋PFC應(yīng)用。
數(shù)字PFC功能基于傳統(tǒng)的升壓電路來(lái)為AC-DC系統(tǒng)提供最佳的諧波校正和功率因數(shù)。所有的信號(hào)都被轉(zhuǎn)換成數(shù)字信號(hào),從而最大限度地提高靈活性;關(guān)鍵參數(shù)可以通過(guò)PMBus接口進(jìn)行報(bào)告和調(diào)整。
總的來(lái)說(shuō),ADP1047和ADP1048的配置可以幫助設(shè)計(jì)工程師優(yōu)化系統(tǒng)性能,最大限度地提高負(fù)載范圍的效率。這兩款I(lǐng)C可以精確地測(cè)量RMS輸入電壓、電流和功率。然后該數(shù)據(jù)可以通過(guò)PMBus接口報(bào)告給電源的微控制器。
ADP1048的無(wú)橋升壓配置可以消除PFC轉(zhuǎn)換器的橋式輸入引起的傳導(dǎo)損耗(圖12)。在這種配置中,兩個(gè)功率MOSFET必須單獨(dú)驅(qū)動(dòng),以實(shí)現(xiàn)最高效率。從ADP1048發(fā)出的信號(hào)可以實(shí)現(xiàn)這一點(diǎn)。IBAL引腳可以檢測(cè)出交流線路相位和零交叉點(diǎn)。IBAL引腳的最高額定電壓為VDD + 0.3 V,因此該引腳需要采用合適的箝位電路進(jìn)行保護(hù)。
圖12
在正交流電源線相位時(shí),只有一個(gè)升壓級(jí)在有效工作。第二個(gè)級(jí)為無(wú)源級(jí);Q2中的電流從源極流至漏極。在此相位時(shí)將Q2 FET全面導(dǎo)通可以最大限度地降低Q2的傳導(dǎo)損耗。當(dāng)交流線路相位變?yōu)樨?fù)時(shí),Q1和Q2的角色則出現(xiàn)反轉(zhuǎn),Q2進(jìn)行有源開關(guān),而Q1則始終處于導(dǎo)通狀態(tài)。相位信息通過(guò)IBAL引腳從交流線路中檢測(cè)。在軟啟動(dòng)階段,兩個(gè)FET都作為預(yù)防措施進(jìn)行開關(guān)操作。當(dāng)IBAL引腳上的相位信息損壞或者不準(zhǔn)確時(shí)就會(huì)出現(xiàn)這樣的情況。