在人臉識(shí)別中,高維、小樣本是一個(gè)問(wèn)題。對(duì)此,提出了一種基于Gabor小波與徑向基函數(shù)(RBF)神經(jīng)網(wǎng)絡(luò)的人臉識(shí)別方法。首先對(duì)人臉進(jìn)行Gabor濾波,選取有效的Gabor組合。進(jìn)行小波分解,獲取低頻圖像,構(gòu)造特征矢量,采用主分量分析降低特征維數(shù)。接著,提出了一種聚類方法用于確定RBF神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和初值,采用混合學(xué)習(xí)法訓(xùn)練RBF神經(jīng)網(wǎng)絡(luò)。用ORL人臉庫(kù)進(jìn)行試驗(yàn),結(jié)果表明本文提出的方法具有優(yōu)秀的學(xué)習(xí)效率和識(shí)別效果。
基于PCA算法的人臉識(shí)別研究