電子元器件是一類器件的總稱,我們常見的元器件包括電阻、電敏、電容、電感、連接器等等。為增進大家對元器件的認識,本文將對元器件的布局、元器件的走線方式予以介紹。如果你對元器件具有興趣,不妨繼續(xù)往下閱讀哦。
一、元器件布局
布局中應參考原理框圖,根據(jù)單板的主信號流向規(guī)律安排主要元器件。
元器件的排列要便于調試和維修,亦即小元件周圍不能放置大元件、需調試的元、器件周圍要有足夠的空間。
相同結構電路部分,盡可能采用“對稱式”標準布局,按照均勻分布、重心平衡、版面美觀的標準優(yōu)化布局。
同類型插裝元器件在X或Y方向上應朝一個方向放置。同一種類型的有極性分立元件也要力爭在X或Y方向上保持一致,便于生產和檢驗。
發(fā)熱元件要一般應均勻分布,以利于單板和整機的散熱,除溫度檢測元件以外的溫度敏感器件應遠離發(fā)熱量大的元器件。
布局應盡量滿足以下要求:總的連線盡可能短,關鍵信號線最短;高電壓、大電流信號與小電流,低電壓的弱信號完全分開;模擬信號與數(shù)字信號分開;高頻信號與低頻信號分開;高頻元器件的間隔要充分。
去偶電容的布局要盡量靠近IC的電源管腳,并使之與電源和地之間形成的回路最短。
元件布局時,應適當考慮使用同一種電源的器件盡量放在一起, 以便于將來的電源分隔。
二、電子元器件走線方式
1 )時鐘的布線:
時鐘線是對EMC 影響最大的因素之一。在時鐘線上應少打過孔,盡量避免和其它信號線并行走線,且應遠離一般信號線,避免對信號線的干擾。同時應避開板上的電源部分,以防止電源和時鐘互相干擾。
如果板上有專門的時鐘發(fā)生芯片,其下方不可走線,應在其下方鋪銅,必要時還可以對其專門割地。對于很多芯片都有參考的晶體振蕩器,這些晶振下方也不應走線,要鋪銅隔離。
2)直角走線:
直角走線一般是PCB布線中要求盡量避免的情況,也幾乎成為衡量布線好壞的標準之一,那么直角走線究竟會對信號傳輸產生多大的影響呢?
從原理上說,直角走線會使傳輸線的線寬發(fā)生變化,造成阻抗的不連續(xù)。其實不光是直角走線,頓角,銳角走線都可能會造成阻抗變化的情況。
直角走線的對信號的影響就是主要體現(xiàn)在三個方面:
拐角可以等效為傳輸線上的容性負載,減緩上升時間;阻抗不連續(xù)會造成信號的反射;直角尖端產生的EMI。
3)差分走線:
差分信號(Differential Signal)在高速電路設計中的應用越來越廣泛,電路中最關鍵的信號往往都要采用差分結構設計。
定義:通俗地說,就是驅動端發(fā)送兩個等值、反相的信號,接收端通過比較這兩個電壓的差值來判斷邏輯狀態(tài)“0”還是“1”。而承載差分信號的那一對走線就稱為差分走線。
差分信號和普通的單端信號走線相比,最明顯的優(yōu)勢體現(xiàn)在以下三個方面:
抗干擾能力強,因為兩根差分走線之間的耦合很好,當外界存在噪聲干擾時,幾乎是同時被耦合到兩條線上,而接收端關心的只是兩信號的差值,所以外界的共模噪聲可以被完全抵消。
能有效抑制EMI,同樣的道理,由于兩根信號的極性相反,他們對外輻射的電磁場可以相互抵消,耦合的越緊密,泄放到外界的電磁能量越少。
時序定位精確,由于差分信號的開關變化是位于兩個信號的交點,而不像普通單端信號依靠高低兩個閾值電壓判斷,因而受工藝,溫度的影響小,能降低時序上的誤差,同時也更適合于低幅度信號的電路。
目前流行的LVDS(low voltage differential signaling)就是指這種小振幅差分信號技術。
對于PCB工程師來說,最關注的還是如何確保在實際走線中能完全發(fā)揮差分走線的這些優(yōu)勢。也許只要是接觸過Layout的人都會了解差分走線的一般要求,那就是“等長、等距”。
等長是為了保證兩個差分信號時刻保持相反極性,減少共模分量;等距則主要是為了保證兩者差分阻抗一致,減少反射?!氨M量靠近原則”有時候也是差分走線的要求之一。
4)蛇形線:
蛇形線是Layout中經常使用的一類走線方式。其主要目的就是為了調節(jié)延時,滿足系統(tǒng)時序設計要求。
設計者首先要有這樣的認識:蛇形線會破壞信號質量,改變傳輸延時,布線時要盡量避免使用。
但實際設計中,為了保證信號有足夠的保持時間,或者減小同組信號之間的時間偏移,往往不得不故意進行繞線。
注意點:
成對出現(xiàn)的差分信號線,一般平行走線,盡量少打過孔,必須打孔時,應兩線一同打孔,以做到阻抗匹配。
相同屬性的一組總線,應盡量并排走線,做到盡量等長。從貼片焊盤引出的過孔盡量離焊盤遠些。
以上便是此次小編帶來的元器件相關內容,通過本文,希望大家對元器件具備一定的認知。如果你喜歡本文,不妨持續(xù)關注我們網站哦,小編將于后期帶來更多精彩內容。最后,十分感謝大家的閱讀,have a nice day!