OFDM技術(shù)的基本原理是什么?進(jìn)行詳細(xì)分析
以下內(nèi)容中,小編將對(duì)OFDM原理的相關(guān)內(nèi)容進(jìn)行著重介紹和闡述,希望本文能幫您增進(jìn)對(duì)OFDM的了解,和小編一起來(lái)看看吧。
在通信系統(tǒng)中,信道所能提供的帶寬通常比傳送一路信號(hào)所需的帶寬要寬得多。如果一個(gè)信道只傳送一路信號(hào)是非常浪費(fèi)的,為了能夠充分利用信道的帶寬,就可以采用頻分復(fù)用的方法。
OFDM主要思想是:將信道分成若干正交子信道,將高速數(shù)據(jù)信號(hào)轉(zhuǎn)換成并行的低速子數(shù)據(jù)流,調(diào)制到在每個(gè)子信道上進(jìn)行傳輸。正交信號(hào)可以通過(guò)在接收端采用相關(guān)技術(shù)來(lái)分開(kāi),這樣可以減少子信道之間的相互干擾(ISI) 。每個(gè)子信道上的信號(hào)帶寬小于信道的相關(guān)帶寬,因此每個(gè)子信道上可以看成平坦性衰落,從而可以消除碼間串?dāng)_,而且由于每個(gè)子信道的帶寬僅僅是原信道帶寬的一小部分,信道均衡變得相對(duì)容易。
OFDM技術(shù)是HPA聯(lián)盟(HomePlug Powerline Alliance)工業(yè)規(guī)范的基礎(chǔ),它采用一種不連續(xù)的多音調(diào)技術(shù),將被稱(chēng)為載波的不同頻率中的大量信號(hào)合并成單一的信號(hào),從而完成信號(hào)傳送。由于這種技術(shù)具有在雜波干擾下傳送信號(hào)的能力,因此常常會(huì)被利用在容易受外界干擾或者抵抗外界干擾能力較差的傳輸介質(zhì)中。
通常的數(shù)字調(diào)制都是在單個(gè)載波上進(jìn)行,如PSK、QAM等。這種單載波的調(diào)制方法易發(fā)生碼間干擾而增加誤碼率,而且在多徑傳播的環(huán)境中因受瑞利衰落的影響而會(huì)造成突發(fā)誤碼。若將高速率的串行數(shù)據(jù)轉(zhuǎn)換為若干低速率數(shù)據(jù)流,每個(gè)低速數(shù)據(jù)流對(duì)應(yīng)一個(gè)載波進(jìn)行調(diào)制,組成一個(gè)多載波的同時(shí)調(diào)制的并行傳輸系統(tǒng)。這樣將總的信號(hào)帶寬劃分為N個(gè)互不重疊的子通道(頻帶小于Δf),N個(gè)子通道進(jìn)行正交頻分多重調(diào)制,就可克服上述單載波串行數(shù)據(jù)系統(tǒng)的缺陷。在向B3G/4G演進(jìn)的過(guò)程中,OFDM是關(guān)鍵的技術(shù)之一,可以結(jié)合分集,時(shí)空編碼,干擾和信道間干擾抑制以及智能天線技術(shù),最大限度的提高了系統(tǒng)性能。包括以下類(lèi)型:V-OFDM, W-OFDM, F-OFDM, MIMO-OFDM,多帶-OFDM。
OFDM中的各個(gè)載波是相互正交的,每個(gè)載波在一個(gè)符號(hào)時(shí)間內(nèi)有整數(shù)個(gè)載波周期,每個(gè)載波的頻譜零點(diǎn)和相鄰載波的零點(diǎn)重疊,這樣便減小了載波間的干擾。由于載波間有部分重疊,所以它比傳統(tǒng)的FDMA提高了頻帶利用率。
在OFDM傳播過(guò)程中,高速信息數(shù)據(jù)流通過(guò)串并變換,分配到速率相對(duì)較低的若干子信道中傳輸,每個(gè)子信道中的符號(hào)周期相對(duì)增加,這樣可減少因無(wú)線信道多徑時(shí)延擴(kuò)展所產(chǎn)生的時(shí)間彌散性對(duì)系統(tǒng)造成的碼間干擾。另外,由于引入保護(hù)間隔,在保護(hù)間隔大于最大多徑時(shí)延擴(kuò)展的情況下,可以最大限度地消除多徑帶來(lái)的符號(hào)間干擾。如果用循環(huán)前綴作為保護(hù)間隔,還可避免多徑帶來(lái)的信道間干擾。
在過(guò)去的頻分復(fù)用(FDM)系統(tǒng)中,整個(gè)帶寬分成N個(gè)子頻帶,子頻帶之間不重疊,為了避免子頻帶間相互干擾,頻帶間通常加保護(hù)帶寬,但這會(huì)使頻譜利用率下降。為了克服這個(gè)缺點(diǎn),OFDM采用N個(gè)重疊的子頻帶,子頻帶間正交,因而在接收端無(wú)需分離頻譜就可將信號(hào)接收下來(lái)。
OFDM系統(tǒng)的一個(gè)主要優(yōu)點(diǎn)是正交的子載波可以利用快速傅利葉變換(FFT/IFFT)實(shí)現(xiàn)調(diào)制和解調(diào)。對(duì)于N點(diǎn)的IDFT運(yùn)算,需要實(shí)施N^2次復(fù)數(shù)乘法,而采用常見(jiàn)的基于2的IFFT算法,其復(fù)數(shù)乘法僅為(N/2)log2N,可顯著降低運(yùn)算復(fù)雜度。
在OFDM系統(tǒng)的發(fā)射端加入保護(hù)間隔,主要是為了消除多徑所造成的ISI。其方法是在OFDM符號(hào)保護(hù)間隔內(nèi)填入循環(huán)前綴,以保證在FFT周期內(nèi)OFDM符號(hào)的時(shí)延副本內(nèi)包含的波形周期個(gè)數(shù)也是整數(shù)。這樣時(shí)延小于保護(hù)間隔的信號(hào)就不會(huì)在解調(diào)過(guò)程中產(chǎn)生ISI。
但是,OFDM也存在缺陷,具體包括:
(1)對(duì)頻偏和相位噪聲比較敏感。OFDM技術(shù)區(qū)分各個(gè)子信道的方法是利用各個(gè)子載波之間嚴(yán)格的正交性。頻偏和相位噪聲會(huì)使各個(gè)子載波之間的正交特性惡化,僅僅1%的頻偏就會(huì)使信噪比下降30dB。因此,OFDM系統(tǒng)對(duì)頻偏和相位噪聲比較敏感。
(2)功率峰值與均值比(PAPR)大,導(dǎo)致射頻放大器的功率效率較低。與單載波系統(tǒng)相比,由于OFDM信號(hào)是由多個(gè)獨(dú)立的經(jīng)過(guò)調(diào)制的子載波信號(hào)相加而成的,這樣的合成信號(hào)就有可能產(chǎn)生比較大的峰值功率,也就會(huì)帶來(lái)較大的功率峰值與均值比,簡(jiǎn)稱(chēng)峰均值比。對(duì)于包含N個(gè)子信道的OFDM系統(tǒng)來(lái)說(shuō),當(dāng)N個(gè)子信道都以相同的相位求和時(shí),所得到的峰值功率就是均值功率的N倍。當(dāng)然這是一種非常極端的情況,通常OFDM系統(tǒng)內(nèi)的峰均值不會(huì)達(dá)到這樣高的程度。高峰均值比會(huì)增大對(duì)射頻放大器的要求,導(dǎo)致射頻信號(hào)放大器的功率效率降低。
(3)負(fù)載算法和自適應(yīng)調(diào)制技術(shù)會(huì)增加系統(tǒng)復(fù)雜度。負(fù)載算法和自適應(yīng)調(diào)制技術(shù)的使用會(huì)增加發(fā)射機(jī)和接收機(jī)的復(fù)雜度,并且當(dāng)終端移動(dòng)速度高于30km每小時(shí)時(shí),自適應(yīng)調(diào)制技術(shù)就不是很適合了。
以上就是小編這次想要和大家分享的有關(guān)OFDM的內(nèi)容,希望大家對(duì)本次分享的內(nèi)容已經(jīng)具有一定的了解。如果您想要看不同類(lèi)別的文章,可以在網(wǎng)頁(yè)頂部選擇相應(yīng)的頻道哦。