詳細(xì)描述ADC的轉(zhuǎn)換原理
ADC是什么?
ADC(Analog to Digital Converter, 模數(shù)轉(zhuǎn)換器), 用于實(shí)現(xiàn)模擬信號向數(shù)字信號的轉(zhuǎn)換。A/D轉(zhuǎn)換的作用是將時(shí)間連續(xù)、幅值也連續(xù)的模擬信號(電信號)轉(zhuǎn)換為時(shí)間離散、幅值也離散的數(shù)字信號(二進(jìn)制0和1信號)。需要ADC將模擬信號轉(zhuǎn)換為數(shù)字信號,然后進(jìn)一步處理。一般要經(jīng)過取樣、保持、量化及編碼4個(gè)過程。因此ADC是模數(shù)之間的橋梁。
ADC的工作原理
模擬信號轉(zhuǎn)換為數(shù)字信號,一般分為4個(gè)步驟進(jìn)行,即采樣、保持、量化和編碼。前2個(gè)步驟在采樣-保持電路中完成,后兩步驟則在ADC中完成。ADC是把經(jīng)過與標(biāo)準(zhǔn)量比較處理后的模擬量轉(zhuǎn)換成以二進(jìn)制數(shù)值表示的離散信號的轉(zhuǎn)換器。故任何一個(gè)模數(shù)轉(zhuǎn)換器都需要一個(gè)參考模擬量作為轉(zhuǎn)換的標(biāo)準(zhǔn),比較常見的參考標(biāo)準(zhǔn)為最大的可轉(zhuǎn)換信號大小。而輸出的數(shù)字量則表示輸入信號相對于參考信號的大小。
1、取樣和保持
取樣是將隨時(shí)間連續(xù)變化的模擬量轉(zhuǎn)換為時(shí)間離散的模擬量。取樣過程示意圖如圖1所示。圖(a)為取樣電路結(jié)構(gòu),其中,傳輸門受取樣信號S(t)控制,在S(t)的脈寬τ期間,傳輸門導(dǎo)通,輸出信號vO(t)為輸入信號v1,而在(Ts-τ)期間,傳輸門關(guān)閉,輸出信號vO(t)=0。電路中各信號波形如圖(b)所示。
圖1 取樣電路結(jié)構(gòu)(a)
圖1 取樣電路中的信號波形(b)
通過分析可以看到,取樣信號S(t)的頻率愈高,所取得信號經(jīng)低通濾波器后愈能真實(shí)地復(fù)現(xiàn)輸入信號。但帶來的問題是數(shù)據(jù)量增大,為保證有合適的取樣頻率,它必須滿足取樣定理。
取樣定理:設(shè)取樣信號S(t)的頻率為fs,輸入模擬信號v1(t)的最高頻率分量的頻率為fimax,則fs與fimax必須滿足下面的關(guān)系fs≥2fimax,工程上一般取fs>(3~5)fimax。
將取樣電路每次取得的模擬信號轉(zhuǎn)換為數(shù)字信號都需要一定時(shí)間,為了給后續(xù)的量化編碼過程提供一個(gè)穩(wěn)定值,每次取得的模擬信號必須通過保持電路保持一段時(shí)間。
2、量化與編碼
量化,由于模擬信號電壓經(jīng)過采樣保持后,得到的是階梯波(如下圖)。而該階梯波仍然是一個(gè)可以連續(xù)取值的模擬量。但n位(經(jīng)常說ADC多少位)數(shù)字量只能保持 2的N次方個(gè)數(shù)值。因此,當(dāng)用數(shù)字來表示連續(xù)變化的階梯模擬量時(shí)就需要四舍五入。將采樣后的樣值脈沖電平歸化到與之接近的離散電平之上,這個(gè)過程稱為量化。
編碼,量化后的數(shù)值還需通過編碼用一個(gè)二進(jìn)制代碼表示出來,經(jīng)過編碼后得到的就是AD轉(zhuǎn)換結(jié)果的數(shù)字量,二進(jìn)制編碼的位寬等于ADC的位寬。下圖是一個(gè)3 bit ADC,只舍不入量化方式(量化中把不足一個(gè)單位的部分舍棄),量化位數(shù)用3 bit來表示連續(xù)信號的幅值。信號滿量程為0~1V,因此最小量化單位Δ=1V/2^3=1/8V。量化位數(shù)越高,ADC的分辨率越高,量化誤差越小。一般ADC的分辨率使用LSB標(biāo)識。
常用的ADC分類
1、積分型ADC
優(yōu)點(diǎn):
積分型ADC分辨率高,位數(shù)可做到12位甚至更高
線性度非常好。本質(zhì)上,輸入端與一個(gè)集成的參考電壓相比較來決定輸出端,所以線性度將取決于比較器的精度。
電路實(shí)現(xiàn)拓?fù)浜唵?,用于?shí)現(xiàn)這些設(shè)備的元件相對較少,因此電路相對簡單且生產(chǎn)成本較低。
缺點(diǎn):
主要缺點(diǎn)是轉(zhuǎn)換速度慢。N位ADC,輸出可能需要長達(dá)2個(gè)N的時(shí)鐘周期來轉(zhuǎn)換單個(gè)采樣點(diǎn)
轉(zhuǎn)換原理都是基于對電壓積分并將積分后電壓與另一電壓比較以控制計(jì)數(shù),計(jì)數(shù)輸出即為ADC輸出。積分對象要么是基于參考電壓,要么是基于參考電壓和輸入電壓。
主要用于傳感器應(yīng)用和諸如電壓表和電流表等設(shè)備,在這些設(shè)備中,精度比速度更重要。換句話說積分型ADC采樣速度比較低,但精度非常高
積分型ADC有不同的種類,常見的有單、雙斜率積分等。增加一個(gè)“斜率”,以犧牲轉(zhuǎn)換時(shí)間為代價(jià)而增加精度。
(1)、單斜率積分ADC
比較器將輸入電壓與集成基準(zhǔn)電壓的值進(jìn)行比較(請注意,由于已連接至運(yùn)算放大器的反相輸入,因此我們將設(shè)為負(fù))。同時(shí)計(jì)算時(shí)鐘周期數(shù)。當(dāng)積分器輸出等于時(shí),比較器輸出邏輯“ 0”,觸發(fā)計(jì)數(shù)器和積分器復(fù)位,鎖存器保持?jǐn)?shù)字輸出。
這就是轉(zhuǎn)換時(shí)間,知道為啥說這種積分型ADC慢了吧。來看下最差的情況吧,假設(shè)輸入電壓,假定,假定是20位ADC,那么!
(2)、雙斜率積分ADC
雙斜率ADC與單斜率ADC的不同之處在于,現(xiàn)在將與地進(jìn)行比較,并集成了兩個(gè)電壓和。剛開始時(shí),負(fù)輸入連接到積分器,使斜升直到計(jì)數(shù)器溢出。由于在反相輸入會切換到一個(gè)負(fù)值進(jìn)行積分,因此積分器輸出將始終為正且大于零,因此計(jì)數(shù)器將繼續(xù)運(yùn)行直到溢出為止,這需要2N個(gè)時(shí)鐘周期(= T1)。
在T2時(shí)刻,將等于與之和,且為0,也即:
則
因此,即為ADC轉(zhuǎn)換的原理,雙斜率比單斜率ADC更慢,由于執(zhí)行了兩次積分, 與積分器斜率相關(guān)的誤差將被抵消,從而從原理上提高了精度。
在儀器儀表系統(tǒng)中,常常需要將檢測到的連續(xù)變化的模擬量如:溫度、壓力、流量、速度、光強(qiáng)等轉(zhuǎn)變成離散的數(shù)字量,才能輸入到計(jì)算機(jī)中進(jìn)行處理。這些模擬量經(jīng)過傳感器轉(zhuǎn)變成電信號(一般為電壓信號),經(jīng)過放大器放大后,就需要經(jīng)過一定的處理變成數(shù)字量。實(shí)現(xiàn)模擬量到數(shù)字量轉(zhuǎn)變的設(shè)備通常稱為模數(shù)轉(zhuǎn)換器(ADC),簡稱A/D。
通常情況下,A/D轉(zhuǎn)換一般要經(jīng)過取樣、保持、量化及編碼4個(gè)過程。
取樣和保持取樣是將隨時(shí)間連續(xù)變化的模擬量轉(zhuǎn)換為時(shí)間離散的模擬量。取樣過程示意圖如圖11.8.1所示。圖(a)為取樣電路結(jié)構(gòu),其中,傳輸門受取樣信號S(t)控制,在S(t)的脈寬τ期間,傳輸門導(dǎo)通,輸出信號vO(t)為輸入信號v1,而在(Ts-τ)期間,傳輸門關(guān)閉,輸出信號vO(t)=0。電路中各信號波形如圖(b)所示。
圖11.8.1 取樣電路結(jié)構(gòu)(a)
圖11.8.1 取樣電路中的信號波形(b)
通過分析可以看到,取樣信號S(t)的頻率愈高,所取得信號經(jīng)低通濾波器后愈能真實(shí)地復(fù)現(xiàn)輸入信號。但帶來的問題是數(shù)據(jù)量增大,為保證有合適的取樣頻率,它必須滿足取樣定理。
取樣定理:設(shè)取樣信號S(t)的頻率為fs,輸入模擬信號v1(t)的最高頻率分量的頻率為fimax,則fs與fimax必須滿足下面的關(guān)系fs≥2fimax,工程上一般取fs>(3~5)fimax。
將取樣電路每次取得的模擬信號轉(zhuǎn)換為數(shù)字信號都需要一定時(shí)間,為了給后續(xù)的量化編碼過程提供一個(gè)穩(wěn)定值,每次取得的模擬信號必須通過保持電路保持一段時(shí)間。
取樣與保持過程往往是通過取樣-保持電路同時(shí)完成的。取樣-保持電路的原理圖及輸出波形如圖11.8.2所示。
圖11.8.2 取樣-保持電路原理圖圖11.8.2 取樣-保持電路波形圖
電路由輸入放大器A1、輸出放大器A2、保持電容CH和開關(guān)驅(qū)動電路組成。電路中要求A1具有很高的輸入阻抗,以減少對輸入信號源的影響。為使保持階段CH上所存電荷不易泄放,A2也應(yīng)具有較高輸入阻抗,A2還應(yīng)具有低的輸出阻抗,這樣可以提高電路的帶負(fù)載能力。一般還要求電路中AV1·AV2=1。
現(xiàn)結(jié)合圖11.8.2來分析取樣-保持電路的工作原理。在t=t0時(shí),開關(guān)S閉合,電容被迅速充電,由于AV1·AV2=1,因此v0=vI,在t0~t1時(shí)間間隔內(nèi)是取樣階段。在t=t1時(shí)刻S斷開。若A2的輸入阻抗為無窮大、S為理想開關(guān),這樣可認(rèn)為電容CH沒有放電回路,其兩端電壓保持為v0不變,圖11.8.2(b)中t1到t2的平坦段,就是保持階段。
取樣-保持電路以由多種型號的單片集成電路產(chǎn)品。如雙極型工藝的有AD585、AD684;混合型工藝的有AD1154、SHC76等。
量化與編碼
數(shù)字信號不僅在時(shí)間上是離散的,而且在幅值上也是不連續(xù)的。任何一個(gè)數(shù)字量的大小只能是某個(gè)規(guī)定的最小數(shù)量單位的整數(shù)倍。為將模擬信號轉(zhuǎn)換為數(shù)字量,在A/D轉(zhuǎn)換過程中,還必須將取樣-保持電路的輸出電壓,按某種近似方式歸化到相應(yīng)的離散電平上,這一轉(zhuǎn)化過程稱為數(shù)值量化,簡稱量化。量化后的數(shù)值最后還需通過編碼過程用一個(gè)代碼表示出來。經(jīng)編碼后得到的代碼就是A/D轉(zhuǎn)換器輸出的數(shù)字量。
量化過程中所取最小數(shù)量單位稱為量化單位,用△表示。它是數(shù)字信號最低位為1時(shí)所對應(yīng)的模擬量,即1LSB。
在量化過程中,由于取樣電壓不一定能被△整除,所以量化前后不可避免地存在誤差,此誤差稱之為量化誤差,用ε表示。量化誤差屬原理誤差,它是無法消除的。A/D 轉(zhuǎn)換器的位數(shù)越多,各離散電平之間的差值越小,量化誤差越小。
量化過程常采用兩種近似量化方式:只舍不入量化方式和四舍五入的量化方式。
1.只舍不入量化方式
以3位A/D轉(zhuǎn)換器為例,設(shè)輸入信號v1的變化范圍為0~8V,采用只舍不入量化方式時(shí),取△=1V,量化中不足量化單位部分舍棄,如數(shù)值在0~1V之間的模擬電壓都當(dāng)作0△,用二進(jìn)制數(shù)000表示,而數(shù)值在1~2V之間的模擬電壓都當(dāng)作1△,用二進(jìn)制數(shù)001表示……這種量化方式的最大誤差為△。
2.四舍五入量化方式
如采用四舍五入量化方式,則取量化單位△=8V/15,量化過程將不足半個(gè)量化單位部分舍棄,對于等于或大于半個(gè)量化單位部分按一個(gè)量化單位處理。它將數(shù)值在0~8V/15之間的模擬電壓都當(dāng)作0△對待,用二進(jìn)制000表示,而數(shù)值在8V/15~24V/15之間的模擬電壓均當(dāng)作1△,用二進(jìn)制數(shù)001表示等。
3.比較
采用前一種只舍不入量化方式最大量化誤差│εmax│=1LSB,而采用后一種有舍有入量化方式│εmax│=1LSB/2,后者量化誤差比前者小,故為多數(shù)A/D轉(zhuǎn)換器所采用。
隨著集成電路的飛速發(fā)展,A/D轉(zhuǎn)換器的新設(shè)計(jì)思想和制造技術(shù)層出不窮。為滿足各種不同的檢測及控制需要而設(shè)計(jì)的結(jié)構(gòu)不同、性能各異的A/D轉(zhuǎn)換器應(yīng)運(yùn)而生。
下面簡單講講A/D轉(zhuǎn)換器的基本原理和分類:
根據(jù)A/D轉(zhuǎn)換器的原理可將A/D轉(zhuǎn)換器分成兩大類。一類是直接型A/D轉(zhuǎn)換器,將輸入的電壓信號直接轉(zhuǎn)換成數(shù)字代碼,不經(jīng)過中間任何變量;另一類是間接型A/D轉(zhuǎn)換器,將輸入的電壓轉(zhuǎn)變成某種中間變量(時(shí)間、頻率、脈沖寬度等),然后再將這個(gè)中間量變成數(shù)字代碼輸出。
盡管A/D轉(zhuǎn)換器的種類很多,但目前廣泛應(yīng)用的主要有三種類型:逐次逼近式A/D轉(zhuǎn)換器、雙積分式A/D轉(zhuǎn)換器、V/F變換式A/D轉(zhuǎn)換器。另外,近些年有一種新型的Σ-Δ型A/D轉(zhuǎn)換器異軍突起,在儀器中得到了廣泛的應(yīng)用。
逐次逼近式(SAR)A/D轉(zhuǎn)換器(SAR)的基本原理是:將待轉(zhuǎn)換的模擬輸入信號與一個(gè)推測信號進(jìn)行比較,根據(jù)二者大小決定增大還是減小輸入信號,以便向模擬輸入信號逼進(jìn)。推測信號由D/A轉(zhuǎn)換器的輸出獲得,當(dāng)二者相等時(shí),向D/A轉(zhuǎn)換器輸入的數(shù)字信號就對應(yīng)的時(shí)模擬輸入量的數(shù)字量。這種A/D轉(zhuǎn)換器一般速度很快,但精度一般不高。常用的有ADC0801、ADC0802、AD570等。
雙積分式A/D轉(zhuǎn)換器的基本原理是:先對輸入模擬電壓進(jìn)行固定時(shí)間的積分,然后轉(zhuǎn)為對標(biāo)準(zhǔn)電壓的反相積分,直至積分輸入返回初始值,這兩個(gè)積分時(shí)間的長短正比于二者的大小,進(jìn)而可以得出對應(yīng)模擬電壓的數(shù)字量。這種A/D轉(zhuǎn)換器的轉(zhuǎn)換速度較慢,但精度較高。由雙積分式發(fā)展為四重積分、五重積分等多種方式,在保證轉(zhuǎn)換精度的前提下提高了轉(zhuǎn)換速度。常用的有ICL7135、ICL7109等。
Σ-Δ型AD由積分器、比較器、1位D/A轉(zhuǎn)換器和數(shù)字濾波器等組成。原理上近似于積分型,將輸入電壓轉(zhuǎn)換成時(shí)間(脈沖寬度)信號,用數(shù)字濾波器處理后得到數(shù)字值。電路的數(shù)字部分基本上容易單片化,因此容易做到高分辨率。主要用于音頻和測量。這種轉(zhuǎn)換器的轉(zhuǎn)換精度極高,達(dá)到16到24位的轉(zhuǎn)換精度,價(jià)格低廉,弱點(diǎn)是轉(zhuǎn)換速度比較慢,比較適合用于對檢測精度要求很高但對速度要求不是太高的檢驗(yàn)設(shè)備。常用的有AD7705、AD7714等。
V/F轉(zhuǎn)換器是把電壓信號轉(zhuǎn)換成頻率信號,由良好的精度和線性,而且電路簡單,對環(huán)境適應(yīng)能力強(qiáng),價(jià)格低廉。適用于非快速的遠(yuǎn)距離信號的A/D轉(zhuǎn)換過程。常用的有LM311、AD650等。