開關電源是一種應用功率半導體器件并綜合電力變換技術、電子電磁技術、自動控制技術等的電力電子產(chǎn)品。
因其具有功耗小、效率高、體積小、重量輕、工作穩(wěn) 定、安全可靠以及穩(wěn)壓范圍寬等優(yōu)點,而被廣泛應用于計算機、通信、電子儀器、工業(yè)自動控制、國防及家用電器等領域。但是開關電源瞬態(tài)響應較差、易產(chǎn)生電磁 干擾,且EMI信號占有很寬的頻率范圍,并具有一定的幅度。這些EMI信號經(jīng)過傳導和輻射方式污染電磁環(huán)境,對通信設備和電子儀器造成干擾,因而在一定程 度上限制了開關電源的使用。
開關電源產(chǎn)生電磁干擾的原因
電磁干擾 (EMI,Electromagneticlnterference)是一種電子系統(tǒng)或分系統(tǒng)受非預期的電磁擾動造成的性能損害。它由三個基本要素組成: 干擾源,即產(chǎn)生電磁干擾能量的設備;藕合途徑,即傳輸電磁干擾的通路或媒介;敏感設備,即受電磁干擾而被損害的器件、設備、分系統(tǒng)或系統(tǒng)。基于此,控制電 磁干擾的基本措施就是:抑制干擾源、切斷禍合途徑及降低敏感設備對干擾的響應或增加電磁敏感性電平。
根據(jù)開關電源工作原理 知:開關電源首先將工頻交流電整流為直流電,再逆變?yōu)楦哳l交流電,最后經(jīng)過整流濾波輸出,得到穩(wěn)定的直流電壓。在電路中,功率三極管、二極管主要工作在開 關管狀態(tài),且工作在微秒量級;三極管、二極管在開一閉翻轉(zhuǎn)過程中,在上升、下降時間內(nèi)電流變化大、易產(chǎn)生射頻能量,形成干擾源。同時,由于變壓器的漏感和 輸出二極管的反向恢復電流造成的尖峰,也會形成潛在的電磁干擾。
開關電源通常工作在高頻狀態(tài),頻率在02 kHz以上,因而其分布電容不可忽略。一方面散熱片與開關管的集電極間的絕緣片,由于其接觸面積較大,絕緣片較薄,因此,兩者間的分布電容在高頻時不能忽 略,高頻電流會通過分布電容流到散熱片上,再流到機殼地,產(chǎn)生共模千擾;另一方面脈沖變壓器的初次級之間存在著分布電容,可將初級繞組電壓直接禍合到次級 繞組上,在次級繞組作直流輸出的兩條電源線上產(chǎn)生共模干擾。
因此 , 開關電源中的干擾源主要集中在電壓、電流變化大,如開關管、二極管、高頻變壓器等元件,以及交流輸人、整流輸出電路部分。
電氣工程師習慣于處理各種抑制問題,從共模抑制到電源抑制,以至于 EMI 抑制,而且這也絕對是我們喜歡做的事。抑制越多越好!
然而對于儀表放大器而言,在計算由電源或共模電壓變化產(chǎn)生的失調(diào)偏移時很容易產(chǎn)生困惑。這種困惑的根本原因如下圖所示:
在圖 1 中,放大器的電源抑制比 (PSRR) 隨放大器增益配置的升高而增加。這樣很容易讓人想到,在高增益下產(chǎn)生任何輸出偏移,都需要電源的明顯變化!但一定要記?。汗材R种票?(CMRR) 和 PSRR 都是輸入?yún)⒖紖?shù):

PSRR 和 CMRR 定義為輸入失調(diào)電壓變化 ΔVOS(IN) 與電源電壓變化 ΔVS 或共模電壓變化 ΔVCM 的比值。
為了了解增益對這些參數(shù)的影響,請將大多數(shù)儀表放大器看成兩個串行的放大器級,一個輸入級放大器(如圖 2 中 G1 所示)和一個輸出級放大器(如 G2 所示)。電源或共模電壓的變化會造成每個放大器級失調(diào)電壓的變化,如圖中 ΔVOS1 和 ΔVOS2 所示。
在需要計算輸入時,用輸入級增益 G1 除第二個失調(diào)電壓變化 ΔVOS2。最后,由于兩個失調(diào)變化的極性未知,可能為正也可能為負,因此可推導出公式 2:

在儀表放大器產(chǎn)品說明書中可找到該公式,從而可計算出由溫度、電源和共模電壓等不同因素所引起的輸入失調(diào)變化值:

圖 3:內(nèi)容摘自 INA118 產(chǎn)品說明書,說明不同因素所導致的輸入失調(diào)變化。
將公式 2 代入公式 1,就很容易得出增益如何影響儀表放大器的 PSRR 和 CMRR:

從輸入級增益除以第二個放大器失調(diào)電壓的變化值 ΔVOS2 可以得出,這兩個參數(shù)會隨增益的提高而增大。
到目前為止,我們一直關注的只是輸入失調(diào)的變化,但輸出端會怎樣呢?畢竟我們通常真正關心的是放大器輸出。很明顯,我們可用 ΔVOS(IN) 乘以放大器總體增益來計算 ΔVOS(OUT)。

很多儀表放大器的輸出級增益都為 1,這就意味著放大器總體增益由輸入級增益決定。這樣我們就可將公式 4 簡化為:

由于輸入級現(xiàn)已成為主要誤差源,因此儀表放大器的 CMRR 和 PSRR 參數(shù)可在較高增益下得到改善。但是,還有一個我們尚未討論的影響。細心的讀者在觀察圖 3 時可能已經(jīng)注意到了:輸出級失調(diào)比輸入級差。