當前位置:首頁 > 電源 > 電源AC/DC
[導讀]用作功率開關(guān)的MOSFET 隨著數(shù)十年來器件設(shè)計的不斷優(yōu)化,功率MOSFET晶體管帶來了新的電路拓撲和電源效率的提升。功率器件從電流驅(qū)動變?yōu)殡妷候?qū)動,加快了這些產(chǎn)品的市場滲透速度。上世紀80年代,平面柵極功率MOSFET

用作功率開關(guān)的MOSFET

隨著數(shù)十年來器件設(shè)計的不斷優(yōu)化,功率MOSFET晶體管帶來了新的電路拓撲和電源效率的提升。功率器件從電流驅(qū)動變?yōu)殡妷候?qū)動,加快了這些產(chǎn)品的市場滲透速度。上世紀80年代,平面柵極功率MOSFET首度面向高壓器件,BVDSS電壓范圍達到500-600V,取得市場的成功。在這個時期,功率MOSFET的傳導損耗主要取決于溝道密度、結(jié)型場效應(yīng)管(JFET)阻抗和外延阻抗(參見圖1)。隨著半導體行業(yè)光刻設(shè)備越來越精密,提高了晶體管單元密度,傳導損耗因而得以改善。光刻設(shè)備能夠?qū)崿F(xiàn)更高的單元密度,同時也促使功率MOSFET的BVDSS范圍成功地下降到100V以內(nèi),實現(xiàn)了新的汽車電子、電源和電機控制應(yīng)用。高壓MOSFET的傳導損耗問題也就轉(zhuǎn)移到外延設(shè)計之上。另一方面,MOSFET器件在降壓轉(zhuǎn)換器中的使用,以及更寬的電源電壓范圍(30V)要求,激發(fā)了市場對更高性能器件的需求。

 

圖1:平面功率MOSFET的導通阻抗元件

上世紀90年代初期平面功率MOSFET技術(shù)的長足發(fā)展之時,出現(xiàn)了一類新型溝道柵極功率MOSFET,為低壓器件設(shè)立了新的性能標桿。這類溝道MOSFET采用一種嵌入在溝道區(qū)域并細致地蝕刻到器件的柵極結(jié)構(gòu),使得溝道密度增加一倍(第一代產(chǎn)品就達到每平方英寸1200萬個單元)。由于新技術(shù)能夠增加并行傳導通道的數(shù)量并減少JFET阻抗元件,因此使到傳導效率提高近30%。

器件設(shè)計人員面對的挑戰(zhàn)是:技術(shù)提升除了增加單元密度,因為柵極-漏極區(qū)域交疊面積和柵極-源極交疊面積增加,所以同時引起容抗和柵極電荷的增加。因此,器件設(shè)計人員一直希望通過結(jié)構(gòu)創(chuàng)新來減少開關(guān)損耗。飛兆半導體公司于1998年推出一種專為高效降壓轉(zhuǎn)換器而優(yōu)化的溝道柵極功率MOSFET,也就是第一代PowerTrench® 產(chǎn)品。如今PowerTrench®已經(jīng)過七代改進優(yōu)化,演變?yōu)樽钚碌慕祲恨D(zhuǎn)換器部件。

針對同步整流拓撲的功率MOSFET優(yōu)化

隨著首批微控制器開始使用有別于計算機的標準5V或12V電源,功率MOSFET也開始獲得廣泛應(yīng)用。將直流電壓轉(zhuǎn)換成更低電壓的舊式降壓轉(zhuǎn)換器,成為低電壓開關(guān)功率器件發(fā)展的應(yīng)用驅(qū)動力。而且開發(fā)焦點也從AC-DC開關(guān)電源和電機驅(qū)動,轉(zhuǎn)向要求更嚴苛的處理器以及能滿足特定的供電要求的相關(guān)外設(shè)組件。

作為處理器電源的降壓轉(zhuǎn)換器隨即增配同步整流器以改善效率,并使用同步開關(guān)功率MOSFET來補充并最終替代肖特基整流二極管,從而降低傳導損耗。而移動計算技術(shù)的出現(xiàn),對轉(zhuǎn)換器效率提出了更高求,進而推動了該技術(shù)的高度演進,成為現(xiàn)代功率MOSFET中使用的模式。

在高技術(shù)水平下,易于確定對降壓轉(zhuǎn)換器MOSFET的要求。在大多數(shù)情況下,同步整流器或SyncFET™都在導通狀態(tài)下工作,并且其導通阻抗應(yīng)當很小,以最大限度減少功耗。高側(cè)開關(guān)MOSFET由直流電源驅(qū)動,生成電脈沖,然后經(jīng)LC濾波器平滑處理成連續(xù)的電壓,再施加到負載上。因為MOSFET的主要損耗來自開關(guān)動作,而且導通時間很短,所以開關(guān)器件速度要夠快,而且導通阻抗要夠小。開關(guān)和整流兩個環(huán)節(jié)交替處于導通狀態(tài),但導通時段不能重疊,否則電源和接地間便會形成所謂直通(shoot-through),直接造成功率損耗。當開關(guān)器件導通時,SyncFET™的漏極電壓瞬變將在柵極CGS上產(chǎn)生感應(yīng)電流和電壓,其大小則取決于CGS和CGD的幅度及兩者的比率以及開關(guān)瞬變速率。如果柵極電壓超過閾值,器件將再次導通,導致直通。所以只要CGS/CGD比率足夠大,便能夠防止漏極電壓瞬變誘發(fā)直通。

分析該技術(shù)演進并明確MOSFET要求后,就能明白器件技術(shù)發(fā)展的主要推動因素。在圖2a的基本溝道柵極結(jié)構(gòu)中,通過增加溝道的寬度/長度比,便可以降低導通阻抗。而按圖2b所示在溝道底部延伸氧化層厚度,就能夠提高開關(guān)速度和增大CGS/ CGD比率。最終的設(shè)定就如圖2c所示,在溝道的柵極下部額外嵌入一個電極,以增加漂移區(qū)電荷,從而降低導通阻抗;并且同時降低CGD,提高開關(guān)速度,并改變CGS /CGD比率,藉此最大限度地防止直通。

 

圖2:a)傳統(tǒng)溝道柵極功率MOSFET;b)溝道底部氧化層加厚的溝道MOSFET;c)增添屏蔽電極的溝道MOSFET。[!--empirenews.page--]

如今,飛兆半導體公司已將上述屏蔽器件的結(jié)構(gòu)發(fā)展到新的精細水平。特定阻抗,或者說單位面積阻抗,已較上一代產(chǎn)品大幅降低,同時提高了業(yè)已出色的開關(guān)性能。過去的數(shù)代器件,例如飛兆半導體的領(lǐng)先產(chǎn)品SyncFET,也需要在低側(cè)同步整流器集成一個肖特基二極管,以降低MOSFET體二極管的死區(qū)時間(dead-time)傳導損耗,并控制體二極管反向恢復時產(chǎn)生的電壓瞬變。為了省去成本相對高昂的肖特基二極管,最新一代的產(chǎn)品采用二極管正向注入,以求最大限度地減小漏極屏蔽容抗,以及降低屏蔽阻抗等專業(yè)技術(shù),力爭抑制那些不利的電壓瞬變行為,如漏極電壓過沖(over-shoot)。

如圖3a和3b所示,新產(chǎn)品的電壓過沖和振蕩甚至大大低于采用集成肖特基部件的器件。SyncFET漏極電壓振蕩經(jīng)過阻尼抑制,使該類應(yīng)用中常見的EMI噪聲大大減少。該解決方案具有極其安靜的開關(guān)特性,可以完全省去用來消除振蕩的外部緩沖電路。

 

圖3:飛兆半導體器件的安靜開關(guān)行為(a)與傳統(tǒng)溝道產(chǎn)品開關(guān)行為(b)的比較

由于器件技術(shù)不斷演進,新產(chǎn)品也開始百花齊放。這些產(chǎn)品通過降低MOSFET開關(guān)的功耗來提高性能及電壓轉(zhuǎn)換器的最大輸出電流。目前,SyncFET通常使用三個毫歐級部件,使多相轉(zhuǎn)換器的每級輸出電流都達到30A以上。鑒于過去數(shù)代產(chǎn)品的部件之間存在封裝互連阻抗,而這種互連阻抗與當今PowerTrench產(chǎn)品的整體阻抗相接近,相比之下,這是一項卓越的成就。封裝互連阻抗降低了八倍,使過去10年來針對半導體阻抗取得四倍的改進,結(jié)果使轉(zhuǎn)換器輸出電流增加了一倍。新產(chǎn)品在未來可達到的進展還包括提高工作頻率,使到濾波電感和電容更小,進而減少所用的電路板空間。

包含封裝的控制器和(或)驅(qū)動電路以及功率開關(guān)的多芯片模塊正在打進諸如游戲機和便攜電腦之類的消費電子產(chǎn)品市場。這些新型部件的優(yōu)勢包括減少電路板的寄生電感因素、避免了分立元件方案所產(chǎn)生的電壓瞬變,以及從轉(zhuǎn)換器剝奪功率的固有弱點,從而延長電池壽命,降低工作溫度,減低輻射噪聲或EMI,并減小電路板尺寸。

封裝和MOSFET器件技術(shù)的進步,大多來自于日益增多的仿真技術(shù)的使用,讓工程師能夠開發(fā)創(chuàng)新的解決方案。本文所述的半導體技術(shù)發(fā)展就依賴于器件的有限元模擬分析和應(yīng)用的模擬分析,從而對半導體 、封裝、柵極驅(qū)動電路和電路板寄生因素間的相互影響有更深入的了解。仿真技術(shù)還能讓人們深入了解器件參數(shù)變化的工藝環(huán)節(jié),找到最大限度消除這些變化的解決方案。

結(jié)論

要開發(fā)針對高級電源的先進功率器件并取得市場佳績,必須考慮和順應(yīng)不斷演進的應(yīng)用需求。這需要針對應(yīng)用中的所有元件進行大量的優(yōu)化工作,包括功率器件的半導體芯片、封裝、電路板布局,以及轉(zhuǎn)換器的工作頻率。飛兆半導體公司認識到這一挑戰(zhàn),并使用新的設(shè)計原則來開發(fā)功率MOSFET。飛兆半導體在電源設(shè)計方面擁有的專業(yè)優(yōu)勢,使其PowerTrench產(chǎn)品功能在業(yè)界穩(wěn)占領(lǐng)先地位。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉