當前位置:首頁 > 模擬 > 模擬
[導讀]介紹了在窄帶數(shù)字電位器中簡單加入并聯(lián)電阻以提高系統(tǒng)帶寬的方法,顯著提高系統(tǒng)性能(帶寬可提高100倍)。設計前提是假設實際應用允許降低電位器的控制范圍,以提高帶寬。

1 引言
    數(shù)字電位器可廣泛用于控制或調整電路參數(shù)。由于數(shù)字電位器本身帶寬的限制.只能用于直流或低頻應用。其典型一3 dB帶寬在100 kHz至幾MHz內,具體數(shù)值與型號有關。然而,通過采用下面介紹的簡單方法,可以將電位器的信號帶寬從10倍提高到100倍,可以獲得4 MHz的O.1 dB帶寬以及25 MHz以上的一3 dB帶寬。這樣可使數(shù)字電位器用于視頻或其他高速應用領域。


2 有限的調整范圍
   
在許多應用中,數(shù)字電位器用于信號微調,而無需從0%到100%的滿量程調整,例如:一次性工廠校準等。在這些應用中,數(shù)字電位器一般提供10%以下的調整范圍。正是借助這一有限的調整范圍來提高數(shù)字電位器的帶寬。

3 典型應用電路
   
圖1為電位器典型的電路配置,圖中,數(shù)字電位器用于改變信號的衰減量。R2為數(shù)字電位器,Cwiper為寄生電容,該電容是所有數(shù)字電位器固有的,它限制電路帶寬。當電位器在0至滿量程之間擺動時,R1和R3用于限制數(shù)字電位器引起的信號衰減。

    需要說明的是:由于該電路采用運算放大器,可用于信號放大和衰減。因此,以下介紹的提高帶寬的方法與所選電路拓撲無關。為計算電路的傳輸函數(shù)(VOUT/VIN),可使用不同模式的電位器,見圖2。圖中,R2被分為R2top和R2bottom,其中,R2top是電位器觸點以上的電阻,R2bottom是電位器觸點以下的電阻。假設使用的電位器具有10 kΩ的端到端電阻(忽略觸點電阻的影響),R2top和R2bottom是相對于數(shù)字編碼的理想傳輸函數(shù),如圖3所示。傳輸函數(shù)的兩個端點和中點:當電位器編碼為0時,R2top=10 kΩ,R2bpttom=0kΩ;而當電位器編碼處于中間位置時,則R2top=R2bottom=5 kΩ;當電位器編碼處于滿標位置時,R2top=0 kΩ,R2bottom=10 kΩ。

    由圖2得出VOUT/VIN的直流傳輸函數(shù):

    VOUT/VIN=(R3+R2bottom)/(R1+R2+R3)    (1)

式中:R2=R2top+R2bottom

    假設R2=10 kΩ(常用數(shù)字電位器電阻值),如果希望把輸入信號衰減到任意電平,例如,輸入值的70%±5%(輸入值的65%~75%)。然后,運用相關運算,調整范圍為65%~75%,標稱值f中間位置)為70%:R1=24.9 kΩ且R3=64.9 kΩ。

4 典型應用電路的帶寬
   
利用式(1)中的R1和R3電阻值,假設Cwiper=10pF,獲得表l所列的帶寬。實際觸點電容在3~80 pF內,并與觸點電阻、步長數(shù)、采用的IC工藝及電位器體系結構等有關。3~5 V供電、32至256步長的10 kΩ電位器的典型電容值為3~10 DF。

    *注意,帶寬與觸點電容成反比。采用3 pF Cwiper,帶寬頻率將提高3.3倍對于視頻等應用,這些帶寬還是過低。
    需要注意的是,這里分析基于的假設是:觸點電容與電位器電阻并聯(lián),由此限制電位器的帶寬。該方法是最直接的電位器使用方式,如果采用更復雜的電位器配置,可能會進一步限制帶寬。因此,討論提高帶寬非常有必要,即使實際帶寬未達到預期目的。


5 提高電路帶寬
   
提高電路帶寬最明顯方法是選擇較低阻值的數(shù)字電位器,例如,1 kΩ電位器,按比例調整R1和R2(1 kΩ電位器與10kΩ電位器相比,阻值減小10倍)。然而,低阻值數(shù)字電位器(1 kΩ)一般占用較大的裸片面積,意味著較高成本和較大封裝尺寸,出于這一原因,1 kΩ電位器的實際應用非常有限。如果某一電位器能夠滿足設計要求,10kΩ電位器的帶寬會隨著電阻的減小而線性提高,例如,提高10倍(假設雜散觸點電容無變化);或使用1 kQ電位器,設置Rl=2.49 kΩ,R3=6.49kΩ,觸點電容為10 pF,電位器設在中間位置,可獲得1.15MHz的—0.1 dB帶寬,及7.6MHz的-3dB帶寬。這比表l中的帶寬提高10倍。


6 使用10 kΩ電位器,改變電路拓撲
   
與1kΩ電位器相比,選擇5kΩ和10 kΩ電位器可能是更好的解決方案,可以獲得更小封裝的電位器,從中選擇易失或非易失存儲器,也有更多的數(shù)字接口(up/down、I2C、SPITM)以及調整步長(32、64、128、256等)可供選擇。出于這一原因,設計實例選用10 kΩ端到端電阻的電位器。假設成本、體積、接口以及電位器調整步長等因素的限制,需使用10 kΩ端到端電阻電位器,這種情況下提高典型應用電路的帶寬的方法是去掉電阻R1和R3,使用步長數(shù)多于該電路要求的電位器。例如,32步長電位器獲得10%的調整范圍,按照上述介紹,可以選擇替換這一步長的電位器,而使用256步長電位器,去掉R4和R6,限制電位器的調整范圍在達到要求衰減的編碼65%~75%內。所使用的編碼是從0.65×256 (使用166)到編碼0.75×256(192)。該實例使用一個256步長的電位器;由于有限的編碼將可用步長數(shù)限制在26,即10%的調整范圍,僅用了256步長的10%。

    與32步長電位器相比,該方法的缺點是256步長電位器成本較高,故可選用封裝尺寸較大的電位器。假設Cwiper為30 pF,VOUT/VIN=0.70,處于調整范圍的中點,圖4電路中有384 kHz的-0.1 dB帶寬,879 kHz的-0.5 dB帶寬,2.52 MHz的一3dB帶寬。與表1相比,其帶寬提高3倍。另一種成本更低、性能更好的方案是在圖圖5最初電路使用兩只并聯(lián)電阻(R4和l電路中加入分立電 R5),與圖l和圖2相比帶寬增大100倍阻,如圖5所示。

7 使用并聯(lián)電阻降低電路阻抗
   
電路中增加并聯(lián)電阻(注意,使用圖2中引入的數(shù)字電位器模型)。降低電路阻抗(提高帶寬),通過設置電路增益,限制由數(shù)字電位器在0編碼到滿標編碼之間擺動時導致的衰減,可以達到雙重目的。
    設置電位器電路增益,使用并聯(lián)器件限制其調整范圍(R4和R5,而不是簡單串聯(lián)R1、R2和R3),其電路帶寬優(yōu)于圖1帶寬。還需要注意,電阻R1、R2和R3還會影響電路增益,但由于其串聯(lián)電阻要比R4和R5大得多,這種影響非常小??梢酝ㄟ^簡單示例來說明R4和R5對圖5電路的影響。在圖6(a)中,電路上部電阻采用了圖中方程給出的電阻組合值。注意,由于R4是與R1和R2top并聯(lián),它降低了電路阻抗。

    在圖6(b)中,電路下部電阻采用了圖中方程給出的電阻組合值。注意,由于R5是與R3和R2bottom并聯(lián),降低了電路阻抗。正是較低的電路阻抗使得帶寬大大提高,達到設計目標的要求。圖7結合了圖6中的簡化示例,給出了VOUT/VIN傳輸函數(shù)。從該圖中可以清楚看到,通過降低電路阻抗(R2top小于R1+R2top,R2bottom小于R2bottom+R3),提高了電路帶寬。


8 實際值
   
實際設置R1、R3、R4和R5的阻值,可以對比圖l電路的帶寬,從而確定R4和R5對電路性能的影響。使用圖6(b)中的方程,得出R1、R3、R4和R5的阻值,然后計算最終帶寬。使用表格,可以找到滿足圖6(b)中方程的元件值:R1=3.48 kΩ、R2=10 kΩ、R3=4.53 kΩ、R4=l kΩ、R5=2.8 kΩ。采用這些元件值得出了表2所列的帶寬。注意,這些結果要比圖1電路提高100倍。

    *注意,帶寬與觸點電容成反比。例如,采用3 pF Cwiper,帶寬提高3.3倍。


9 結語
   
介紹了在窄帶數(shù)字電位器中簡單加入并聯(lián)電阻以提高系統(tǒng)帶寬的方法,顯著提高系統(tǒng)性能(帶寬可提高100倍)。設計前提是假設實際應用允許降低電位器的控制范圍,以提高帶寬。帶寬提高后,數(shù)字電位器可用于以前無法涉及的高頻領域,例如視頻信號鏈路控制等。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產業(yè)博覽會開幕式在貴陽舉行,華為董事、質量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經營業(yè)績穩(wěn)中有升 落實提質增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數(shù)字經濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯(lián)合牽頭組建的NVI技術創(chuàng)新聯(lián)盟在BIRTV2024超高清全產業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術創(chuàng)新聯(lián)...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉