當(dāng)前位置:首頁(yè) > 模擬 > 模擬
[導(dǎo)讀] 0.引言  在智能小區(qū)的安防系統(tǒng)中,人臉識(shí)別技術(shù)的應(yīng)用,提高了安防報(bào)警系統(tǒng)的安全可靠性。人臉識(shí)別技術(shù)因其具有非接觸性、特征提取方便、防偽性能高等優(yōu)勢(shì)得到廣泛的應(yīng)用。人臉識(shí)別技術(shù)綜合了計(jì)算機(jī)、通信、光學(xué)

  0.引言

  在智能小區(qū)的安防系統(tǒng)中,人臉識(shí)別技術(shù)的應(yīng)用,提高了安防報(bào)警系統(tǒng)的安全可靠性。人臉識(shí)別技術(shù)因其具有非接觸性、特征提取方便、防偽性能高等優(yōu)勢(shì)得到廣泛的應(yīng)用。人臉識(shí)別技術(shù)綜合了計(jì)算機(jī)、通信、光學(xué)、電子、機(jī)械等多學(xué)科技術(shù),在控制領(lǐng)域和智能建筑領(lǐng)域有著廣闊的應(yīng)用前景 。本文研究了基于聚類(lèi)算法判別人臉圖像的方法,達(dá)到應(yīng)用于智能小區(qū)門(mén)禁系統(tǒng)和樓宇門(mén)禁系統(tǒng)的實(shí)際應(yīng)用要求,如圖1所示。


 


圖1 智能門(mén)禁報(bào)警系統(tǒng)的結(jié)構(gòu)圖

  基于圖像分塊進(jìn)行人臉識(shí)別時(shí),隨著分塊數(shù)目的增多,子圖像保留的奇異值個(gè)數(shù)、維數(shù)的控制,以及子圖像權(quán)重的賦值等問(wèn)題,若只依靠主觀經(jīng)驗(yàn)來(lái)決定,則缺乏客觀依據(jù)。徑向基函數(shù)(RBF-Radial Basis FunctiON)網(wǎng)絡(luò)是一種性能良好的前饋型三層神經(jīng)網(wǎng)絡(luò),具有全局逼近性質(zhì)和最佳逼近性能,訓(xùn)練方法快速易行,RBF 函數(shù)還具有局部響應(yīng)的生物合理性。在隱含層中心確定的情況下,RBF網(wǎng)絡(luò)只需對(duì)隱含層至輸出層的單層權(quán)值學(xué)習(xí)修正,比多層感知器具有更快的收斂速度。利用 YALE人臉數(shù)據(jù)庫(kù),通過(guò)RBF網(wǎng)絡(luò)對(duì)奇異值個(gè)數(shù)、子圖像數(shù)目、特征值數(shù)量、聚類(lèi)因數(shù) 、聚類(lèi)個(gè)數(shù)、 因數(shù)的測(cè)試結(jié)果,為人臉圖像的識(shí)別提供客觀地指導(dǎo)。

  利用相關(guān)參數(shù)的仿真實(shí)驗(yàn)結(jié)果,為進(jìn)一步研究子圖像賦值情況,提高人臉識(shí)別的速度和精確度提供了有效的幫助和參數(shù)支持。

  1.聚類(lèi)算法的初始化

  RBF神經(jīng)網(wǎng)絡(luò)可描述為:



  式中,w(k,i)為隱含層第i個(gè)節(jié)點(diǎn)與輸出層第k個(gè)輸出節(jié)點(diǎn)的連接權(quán)值。

  隱含層聚類(lèi)的初始化過(guò)程如下。

  (1)在每個(gè)類(lèi)別收斂于一個(gè)聚類(lèi)中心的假設(shè)前提下,將隱含層的節(jié)點(diǎn)數(shù)初始設(shè)定為輸出層的節(jié)點(diǎn)數(shù),即u=s,再根據(jù)RBF神經(jīng)網(wǎng)絡(luò)的訓(xùn)練情況具體調(diào)整。

  (2)隱含層第k個(gè)神經(jīng)元的中心Ck為 k 類(lèi)特征矢量的均值。

  (3)計(jì)算從均值Ck到屬于類(lèi)別k的最遠(yuǎn)點(diǎn)kfarP的歐氏距離。

  (4)計(jì)算各個(gè)j聚類(lèi)中心到k聚類(lèi)中心的距離。再根據(jù)dmin(k,l)和dk,dl的關(guān)系,對(duì)以下幾種情況進(jìn)行判斷。

  情況(a):若滿足的條件,則表明類(lèi)別k與其他類(lèi)別l無(wú)重疊。

  情況(b):若滿足的條件,則表明類(lèi)別k與其他類(lèi)別l有重疊,需要進(jìn)一步考慮以下情況 。

  (i)當(dāng)滿足的條件時(shí),則表明兩個(gè)類(lèi)別雖有重疊,但是互相不包含。

  (ii)當(dāng)滿足的條件時(shí),則表明類(lèi)別k包含于其他類(lèi)別之中,可能導(dǎo)致RBF神經(jīng)網(wǎng)絡(luò)分類(lèi)錯(cuò)誤。

  (5)按照以下分離原則對(duì)每類(lèi)樣本進(jìn)行判別并細(xì)分。

  (i)包含規(guī)則:若滿足,則表明類(lèi)別k包含于類(lèi)別l之中,類(lèi)別l應(yīng)被進(jìn)一步細(xì)分為兩個(gè)聚類(lèi)。

  (ii)正確歸類(lèi)規(guī)則:若類(lèi)別k包含許多其他類(lèi)別l的數(shù)據(jù),則需要將類(lèi)別k進(jìn)一步細(xì)分為兩個(gè)聚類(lèi)。

  重復(fù)上述步驟,直至選定的全部人臉圖像的訓(xùn)練樣本都被處理為止,整個(gè)RBF神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)隨之確定。

  2.RBF神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整

  定義誤差函數(shù)為:



  其中,lky和lkt表示在輸出層ky節(jié)點(diǎn)上對(duì)應(yīng)第l個(gè)訓(xùn)練樣本的實(shí)際輸出值和理想輸出值。通過(guò)線性最小二乘法求解最佳連接權(quán)值*W。

  RBF神經(jīng)網(wǎng)絡(luò)的訓(xùn)練收斂性能,如圖2的實(shí)例所示。圖2為RBF神經(jīng)網(wǎng)絡(luò)誤差輸出曲線圖,圖中的橫軸表示RBF神經(jīng)網(wǎng)絡(luò)訓(xùn)練的迭代次數(shù),縱軸表示RBF神經(jīng)網(wǎng)絡(luò)實(shí)際誤差的輸出值,即訓(xùn)練迭代一次新網(wǎng)絡(luò)的輸出值與原先網(wǎng)絡(luò)按誤差函數(shù)公式(2)計(jì)算得到的結(jié)果。實(shí)驗(yàn)條件為在Yale數(shù)據(jù)庫(kù)中,選取15個(gè)類(lèi)別的人臉圖像,每個(gè)類(lèi)別選取11張人臉圖像作為訓(xùn)練樣本,提取每個(gè)人臉圖像的特征值數(shù)量為90,對(duì)應(yīng)于網(wǎng)絡(luò)的訓(xùn)練集為一個(gè)165×90的矩陣時(shí),得到RBF神經(jīng)網(wǎng)絡(luò)訓(xùn)練的誤差函數(shù)輸出情況。在具體實(shí)驗(yàn)中,設(shè)定RBF神經(jīng)網(wǎng)絡(luò)停止參數(shù)訓(xùn)練調(diào)整的條件為:當(dāng)前一次系統(tǒng)輸出誤差值與當(dāng)前系統(tǒng)輸出誤差值的變化量相差小于0.01時(shí),RBF神經(jīng)網(wǎng)絡(luò)停止參數(shù)訓(xùn)練調(diào)整。圖2表明,RBF 神經(jīng)網(wǎng)絡(luò)的誤差輸出值下降得很快,在迭代過(guò)程不到15次的情況下,誤差曲線就進(jìn)入系統(tǒng)誤差值輸出相差較小的范圍內(nèi),收斂速度較快。



圖2 RBF網(wǎng)絡(luò)誤差輸出曲線圖

  3.聚類(lèi)算法的仿真實(shí)驗(yàn)

  參數(shù)設(shè)定值的不同,將對(duì)基于聚類(lèi)算法的人臉圖像識(shí)別的結(jié)果產(chǎn)生影響,例如對(duì)子圖像劃分的個(gè)數(shù)、子圖像奇異值向量保留的個(gè)數(shù)、聚類(lèi)因數(shù)α、γ因數(shù)的選取等。對(duì)不同參數(shù)初始化時(shí)設(shè)定不同的數(shù)值,將得到的實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比和綜合分析,進(jìn)而確定包括輸入層、輸出層、隱含層節(jié)點(diǎn)數(shù)目及其核函數(shù)的選取等在內(nèi)的合理的RBF神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),確定包括貝葉斯分類(lèi)器的權(quán)值分配、閾值選取等在內(nèi)的合適融合策略,以便進(jìn)行深入的研究。

  實(shí)驗(yàn)中,訓(xùn)練樣本為Yale人臉庫(kù)中的每人前6張照片,共90張,測(cè)試樣本為每人的后5張照片,共75張。樣本完整訓(xùn)練誤差容限為1,訓(xùn)練最大次數(shù)為120。

  (1)在γ因數(shù)取為0.8、子圖像的數(shù)目為32塊、保留子圖像的奇異值個(gè)數(shù)為10的條件下,測(cè)試不同聚類(lèi)因數(shù)α取值、不同聚類(lèi)個(gè)數(shù)(即RBF神經(jīng)網(wǎng)絡(luò)隱含節(jié)點(diǎn)個(gè)數(shù))情況下的識(shí)別率。如圖3中data1所示。



圖3 不同參數(shù)下的識(shí)別結(jié)果

  實(shí)驗(yàn)結(jié)果表明,隨著聚類(lèi)因數(shù)α的增大,聚類(lèi)個(gè)數(shù)也在增多,當(dāng)α>3.0以后,識(shí)別率趨于穩(wěn)定。而且,在RBF神經(jīng)網(wǎng)絡(luò)中隱含層節(jié)點(diǎn)數(shù)增多的情況下,會(huì)加大RBF神經(jīng)網(wǎng)絡(luò)的計(jì)算負(fù)擔(dān)。因此,最終選擇聚類(lèi)因數(shù)α=3.5,來(lái)進(jìn)一步研究子圖像權(quán)重的賦值。

  (2)在聚類(lèi)因數(shù)α取為3.5、子圖像的數(shù)目為32塊、保留子圖像的奇異值個(gè)數(shù)為10的條件下,測(cè)試不同γ因數(shù)情況下的識(shí)別率,如圖3中data2所示(data2與data3重合)。實(shí)驗(yàn)結(jié)果表明,在γ因數(shù)逐漸增大的情況下,識(shí)別率隨之逐漸提高并趨于穩(wěn)定。因此,最終選擇γ=0.8,來(lái)進(jìn)一步研究子圖像權(quán)重的賦值。

  (3)在聚類(lèi)因數(shù)α取為3.5、γ因數(shù)取為0.8、子圖像的數(shù)目為32塊的條件下,測(cè)試每個(gè)子圖像保留不同奇異值個(gè)數(shù)時(shí)識(shí)別率的情況,如圖3中data3所示。實(shí)驗(yàn)結(jié)果表明,在子圖像的奇異值個(gè)數(shù)增加的情況下,識(shí)別率的有所增加并趨于穩(wěn)定。最終選擇保留子圖像的奇異值個(gè)數(shù)為10,來(lái)進(jìn)一步研究子圖像權(quán)重的賦值。

  (4)在聚類(lèi)因數(shù)α取為3.5、γ因數(shù)取為0.8的條件下,測(cè)試保留不同奇異值特征個(gè)數(shù)時(shí)識(shí)別率的情況。如圖3中data4所示,其中,每個(gè)子圖像保留奇異值的個(gè)數(shù)×子圖像數(shù)目=每幅圖像的奇異值特征個(gè)數(shù)。

  實(shí)驗(yàn)結(jié)果表明,人臉圖像劃分的子圖像數(shù)目較多的情況下,識(shí)別率較高,而且當(dāng)子圖像的數(shù)目達(dá)到32塊時(shí),識(shí)別率已經(jīng)趨于穩(wěn)定狀態(tài)。人臉圖像劃分的子圖像數(shù)目不宜過(guò)多,這樣會(huì)使每幅人臉圖像的奇異值特征個(gè)數(shù)過(guò)大,進(jìn)而增加RBF神經(jīng)網(wǎng)絡(luò)的計(jì)算負(fù)擔(dān)。最終選擇子圖像的數(shù)目為32塊的情況,來(lái)進(jìn)一步研究子圖像權(quán)重的賦值。

  4.仿真實(shí)驗(yàn)結(jié)果分析

  基于上述仿真實(shí)驗(yàn)數(shù)據(jù)進(jìn)行參數(shù)設(shè)定,在人臉識(shí)別仿真系統(tǒng)中測(cè)試情況如圖4所示。


 

圖4 人臉識(shí)別仿真系統(tǒng)

  根據(jù)實(shí)驗(yàn)結(jié)果確定聚類(lèi)因數(shù) α=3.5、γ=0.8、保留子圖像的奇異值個(gè)數(shù)為10。人臉圖像的子圖像數(shù)目對(duì)應(yīng)于RBF神經(jīng)網(wǎng)絡(luò)輸入空間的維數(shù)r,樣本庫(kù)中的人臉圖像類(lèi)別數(shù)對(duì)應(yīng)于輸出空間的維數(shù)s,每類(lèi)人臉圖像樣本的子圖像的特征空間數(shù)目對(duì)應(yīng)隱含層節(jié)點(diǎn)數(shù)u,根據(jù)上述實(shí)驗(yàn)結(jié)果調(diào)整u不超過(guò)120。對(duì)人臉圖像進(jìn)行分塊,在樣本數(shù)量很大、維數(shù)很高的情況下,有效地減少了計(jì)算量。但是,子圖像數(shù)目不宜過(guò)多,否則增加神經(jīng)網(wǎng)絡(luò)計(jì)算負(fù)擔(dān),識(shí)別率也會(huì)有所下降。

  5.結(jié)語(yǔ)

  本文研究了基于聚類(lèi)算法的人臉識(shí)別方法。根據(jù)人臉圖像劃分子圖像的數(shù)目和所選定的訓(xùn)練或測(cè)試人臉圖像的類(lèi)別數(shù)的情況,確定RBF神經(jīng)網(wǎng)絡(luò)的輸入層、輸出層的節(jié)點(diǎn)數(shù);根據(jù)RBF神經(jīng)網(wǎng)絡(luò)的訓(xùn)練識(shí)別效果,通過(guò)調(diào)整中間隱含層節(jié)點(diǎn)數(shù)、核函數(shù)及其中心點(diǎn)和寬度,通過(guò)基于聚類(lèi)算法的人臉識(shí)別仿真實(shí)驗(yàn),具體量化了中間隱含層節(jié)點(diǎn)數(shù)與子圖像的對(duì)應(yīng)關(guān)系、每幅子圖像中奇異值向量的保留個(gè)數(shù)、聚類(lèi)因數(shù)的選取等各項(xiàng)參數(shù),為進(jìn)一步根據(jù)各個(gè)子圖像權(quán)值的合理分配,提高人臉識(shí)別的識(shí)別精度和良好的識(shí)別速度提供了有效的參數(shù)支持。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專(zhuān)欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車(chē)的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車(chē)技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車(chē)工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車(chē)。 SODA V工具的開(kāi)發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車(chē) 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開(kāi)幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉