當(dāng)前位置:首頁 > 模擬 > 模擬
[導(dǎo)讀]目前許多高性能ADC設(shè)計均采用差分輸入。全差分ADC設(shè)計具有共模抑制性能出色、二階失真產(chǎn)物較少、直流調(diào)整算法簡單的優(yōu)點(diǎn)。盡管可以單端驅(qū)動,但全差分驅(qū)動器通??梢詢?yōu)化整體性能。 差分設(shè)計固有的低二階失真產(chǎn)物

目前許多高性能ADC設(shè)計均采用差分輸入。全差分ADC設(shè)計具有共模抑制性能出色、二階失真產(chǎn)物較少、直流調(diào)整算法簡單的優(yōu)點(diǎn)。盡管可以單端驅(qū)動,但全差分驅(qū)動器通??梢詢?yōu)化整體性能。

差分設(shè)計固有的低二階失真產(chǎn)物如下所示。失真產(chǎn)物可以通過將電路傳遞函數(shù)表達(dá)為冪級數(shù)來建立模型。

進(jìn)行輸出一般擴(kuò)展并假設(shè)放大器匹配,我們得到:



采用差分輸出:



其中k1、k2和k3為常數(shù)。

二次項引起二階諧波失真,三次項引起三階諧波失真,如此等等。在一個全差分放大器中,奇數(shù)階項保留極性,而偶數(shù)階項則始終為正。當(dāng)采取差分時,偶數(shù)階項如等式3所示消除。三階項不受影響。

差分輸入ADC的一種最常用驅(qū)動方法是使用變壓器。不過,因?yàn)轭l率響應(yīng)必須延伸至直流,許多應(yīng)用無法使用變壓器來驅(qū)動。這類情況就需要使用差分驅(qū)動器。在ADC前面需要明顯信號增益的情況下,差分放大器提供一種不錯的解決方案。盡管提供"無噪聲"電壓增益,但匝數(shù)比大于2的變壓器一般為帶寬和失真問題所困擾,在中頻時尤為明顯。

圖1所示為驅(qū)動ADC而優(yōu)化的AD813x和ADA493x系列全差分放大器框圖。圖1A顯示內(nèi)部電路細(xì)節(jié),而圖1B顯示等效電路。增益由外部電阻RF和RG設(shè)定,共模電壓由VOCM引腳上的電壓設(shè)定。內(nèi)部共模反饋強(qiáng)制VOUT+和VOUT–輸出保持平衡,即在兩個輸出端的信號根據(jù)等式幅值始終相等,但相位相差180°。





圖1:AD813x、AD493x差分ADC驅(qū)動器功能框圖及等效電路。

AD813x和ADA493x用兩個反饋環(huán)路,來分開控制差分輸出電壓和共模輸出電壓。外部電阻設(shè)定的差分反饋只控制差分輸出電壓。共模反饋控制共模輸出電壓。這種架構(gòu)方便在電平轉(zhuǎn)換應(yīng)用中任意設(shè)定輸出共模電平。內(nèi)部共模反饋強(qiáng)制其等于VOCM輸入上施加的電壓,而不影響差分輸出電壓。其結(jié)果是近乎完美的平衡差分輸出,在寬廣的頻率范圍內(nèi)其幅度完全相同,相位相差180°。該電路可配合差分或單端輸入使用,且電壓增益等于RF與RG之比。

該電路可使用圖2中所歸納的假設(shè)和程序來分析。如同運(yùn)算放大器電路直流分析的情況,我們可以先假設(shè)流入反相和同相輸入的電流為零(即輸入阻抗相對反饋電阻值較高)。第二個假設(shè)為反饋強(qiáng)制同相和反相輸入電壓相等。第三個假設(shè)為輸出電壓相位相差180°并在VOCM兩側(cè)對稱。


圖2:差分放大器電平分析

即使外部反饋網(wǎng)絡(luò)(RF/RG)不匹配,內(nèi)部共模反饋環(huán)路仍將強(qiáng)制輸出保持平衡。每個輸出端的信號幅度保持相等,相位相差180°。輸入到輸出的差模增益變化與反饋的不匹配成比例,但輸出平衡不受影響。外部電阻的比例匹配誤差會導(dǎo)致電路抑制輸入共模信號的能力降低,非常類似于使用常規(guī)運(yùn)算放大器制成的四電阻差動放大器。

而且,如果輸入和輸出共模電壓的直流電平不同,匹配誤差會導(dǎo)致一個細(xì)小的差模輸出失調(diào)電壓。對于G = 1,具有一個地基準(zhǔn)輸入信號且針對2.5 V設(shè)定輸出共模電平的情況,如果使用1%容差電阻,則可產(chǎn)生高達(dá)25 mV的輸出失調(diào)(1%共模電平差)。由于2.5 V電平轉(zhuǎn)換,1%容差的電阻將導(dǎo)致一個約40 dB的輸入CMR(最差情況)、25 mV的差模輸出失調(diào)(最差情況),不會對輸出平衡誤差造成明顯惡化。

如圖2所示電路的有效輸入阻抗(在V IN+和V IN–端)取決于放大器是由單端信號源驅(qū)動,還是由差分信號源驅(qū)動。對于平衡差分輸入信號,兩個輸入端(V IN+和V IN– )之間的輸入阻抗(R IN,dm )為:



若為單端輸入信號(例如,若V IN–接地,輸入信號接入V IN+ ),輸入阻抗則為:



該電路的單端輸入阻抗高于作為反相放大器連接的常規(guī)運(yùn)算放大器,因?yàn)橐恍〔糠植罘州敵鲭妷涸谳斎攵吮憩F(xiàn)為共模信號,從而部分增加了輸入電阻RG兩端的電壓。

圖3所示為AD813x差分放大器的一些可能配置。圖3A為標(biāo)準(zhǔn)配置,其中利用兩個反饋網(wǎng)絡(luò),分別表現(xiàn)為反饋系數(shù)­1和­2.另需注意,各反饋系數(shù)可能為0與1之間的任意數(shù)。



 

圖3:差分放大器的一些配置

圖3B顯示在 V OUT–至V+之間無任何反饋的配置,即­1 = 0.在這種情況下,­2決定反饋至V–的V OUT+量值,且除了有額外的互補(bǔ)輸出外,電路類似于同相運(yùn)算放大器。因此,整體增益是同相運(yùn)算放大器的兩倍,或2 × (1 + RF2/RG2)或2 × (1/­2)。

圖3C顯示­1 = 0且­2 = 1的電路。該電路特別提供無電阻增益2.

圖3D顯示­2 = 1的電路,而­1則由RF1和RG1決定。此電路的增益始終小于2.

最后,圖3E的電路­2 = 0,除V OUT+端的額外互補(bǔ)型輸出外,極其類似于常規(guī)反相運(yùn)算放大器。

差分驅(qū)動器/接收器應(yīng)用

AD813x/ADA493x系列也非常適用于平衡差分線路驅(qū)動,如圖4所示,其中AD8132驅(qū)動一根100 ‑雙絞線。AD8132配置成一個增益為2的驅(qū)動器,說明來源和負(fù)載端接電纜所引起的2倍損耗。在此配置下,AD8132的帶寬約為160 MHz.



圖4:高速差分線路驅(qū)動器、線路接收器應(yīng)用

該線路接收器為一個AD8130差分接收器,具有一種稱為"有源反饋"的獨(dú)創(chuàng)架構(gòu),可在10MHz時實(shí)現(xiàn)約70 dB的共模抑制。對于增益1,AD8130的3dB帶寬約為270 MHz.

AD8130利用兩個相同的跨導(dǎo)(gm)級,其輸出電流在高阻抗節(jié)點(diǎn)處加總,然后緩沖至輸出端。兩個gm級的輸出電流必須相等,符號相反,因此各自輸入電壓也必須相等,符號相反。

差分輸入信號接入其中一級(GM1),而負(fù)反饋則如同常規(guī)運(yùn)算放大器接入至另一級(GM2)。

增益等于1 + R2/R1.GM1級因此為端接雙絞線提供一個真正平衡的輸入,以獲得最佳的共模抑制。

一系列三路驅(qū)動器用于在5類電纜上驅(qū)動RGB,例如AD8133、AD8134、AD8146、AD8147、 AD8148.

也可提供相應(yīng)的三路接收器,包括AD8143和AD8145.AD8123(三路)和AD8128(單路)接收器也包括可調(diào)節(jié)線路均衡。

應(yīng)用示例:ADA4937-1差分放大器驅(qū)動AD6645 14位80/105MSPS ADC

AD813x和ADA493x系列差分驅(qū)動器適用于直流或交流耦合應(yīng)用,其中電壓增益1至4(0 dB至12 dB),頻率高達(dá)約100 MHz(取決于該系列的特定成員)。它們特別適合用作低失真直流耦合單端至差分轉(zhuǎn)換器以驅(qū)動差分輸入ADC.VOCM特性可用于電平轉(zhuǎn)換雙極性信號以匹配ADC的共模輸入電壓。直流驅(qū)動器的電路分析細(xì)節(jié)和電阻值挑選在MT-xxx中給出。還提供ADIsimDi­Amp設(shè)計工具以方便這類設(shè)計。

ADA4937-1是最新系列差分放大器之一,針對+5 V單電源特殊優(yōu)化。圖5顯示它用作一個電平轉(zhuǎn)換器以驅(qū)動AD6645 14位80/105 MSPS ADC.(ADA4939-1是一個針對電壓增益‑ 2而優(yōu)化的類似器件)。



圖5:ADA4937-1在+5 V直流耦合應(yīng)用中驅(qū)動AD6645

現(xiàn)在將在信號擺幅和共模電平方面對圖5所示電路進(jìn)行細(xì)致分析。為確保所有電壓落入器件規(guī)定的允許范圍內(nèi),這一步必不可少。

AD6645利用一個2.2 V p-p差分信號操作,共模電壓為+2.4 V.這意味著ADA4937的每個輸出必須在1.85 V和2.95 V之間擺動,即在+5 V單電源運(yùn)行的ADA4937-1的輸出驅(qū)動能力范圍內(nèi)。

輸入信號因此必須在1.025 V和1.575 V之間擺動,落入在+5 V單電源運(yùn)行的ADA4937-1的允許輸入范圍內(nèi)。

電路輸入由一個50 ­來源驅(qū)動。在單端配置中"自舉式"輸入阻抗約為267Ω 。61.5Ω 輸入終端電阻與267Ω增益設(shè)定電阻并聯(lián)使得整體阻抗約為50 Ω。注意,228 Ω電阻是與反相輸入串聯(lián)插入的。這是為了匹配同相輸入的凈阻抗(200 Ω + 61.5 Ω||50 Ω= 200 Ω+ 28 Ω= 228Ω)。

沒有此額外28Ω匹配電阻與最初200Ω增益設(shè)定電阻串聯(lián),不平衡源阻抗會導(dǎo)致一個不必要的差分失調(diào)電壓出現(xiàn)在輸出端上。

底部增益設(shè)定電阻從200Ω增加至228Ω需要反饋電阻增加至207Ω以便保持增益1.實(shí)際上,最近標(biāo)準(zhǔn)1%電阻會代替計算值。ADIsimDi‑Amp設(shè)計工具用來方便這類設(shè)計并計算特定增益和源阻抗的所需電阻值。該工具還檢查是否違反差分放大器的輸入和輸出共模范圍限制。

ADA4937-1的輸出噪聲電壓頻譜密度只有5 nV/√Hz.該值包括反饋和增益電阻的貢獻(xiàn)并適用于G = 1.這在AD6645的輸入帶寬(270 MHz)上積分,產(chǎn)生103 V rms的輸出噪聲。這對應(yīng)于放大器所引起的77.6 dB SNR.注意,由于沒有任何外部噪聲濾波器,積分必須在ADC的完整輸入帶寬上。

AD6645的SNR為75 dB,對應(yīng)于138μV rms的輸入噪聲。由于運(yùn)算放大器(103μV)和ADC(138μV)所引起的組合噪聲為172μV,產(chǎn)生73 dB的整體SNR.

如果不需要AD6645的完整帶寬,可通過選擇適當(dāng)?shù)腃值來增加一個單極降噪濾波器。

適合中頻應(yīng)用的寬帶交流耦合ADC驅(qū)動器

在圖6所示的示例中,我們數(shù)字分析了AD9445 14位125MSPS ADC的寬帶信號,希望盡量保留ADC輸入帶寬。因此沒有任何中間級噪聲濾波器。


圖6:AD8352 2GHz 差分放大器驅(qū)動AD944514位 125MSPS ADC

在100 MHz時,AD9445輸入帶寬為615 MHz,SFDR為95 dBc.對于驅(qū)動器,我們挑選了AD8352 2 GHz帶寬差分放大器,因?yàn)槠潆娮杩删幊淘鲆娣秶鸀? db至21 dB.該放大器還具有低噪聲(對于10 dB增益設(shè)置,等效輸入噪聲為2.7 nV/­Hz)、低失真(100 MHz時82 dBc HD3 )。帶寬要求的更低端約為10 MHz.

圖6所示為在寬帶應(yīng)用中利用2 GHz AD8352驅(qū)動AD9445的最佳電路配置。巴倫將單端輸入轉(zhuǎn)換為差分以驅(qū)動AD8352.盡管可配置AD8352以接受一個單端輸入(見AD8352數(shù)據(jù)手冊),但如果按圖所示以差分驅(qū)動,則獲得最佳的失真性能。選擇CD/RD網(wǎng)絡(luò)是為了優(yōu)化AD8352的三階交調(diào)性能。這些值是基于所需增益而選擇并在數(shù)據(jù)手冊中給出。

該電路對于105 MSPS采樣的98.9 MHz輸入信號產(chǎn)生83 dBc的SFDR.

G = 10時AD8352的輸出噪聲頻譜密度為8.5 nV/­Hz.由于沒有任何輸入濾波器,這必須在AD9445的整個615 MHz輸入帶寬上積分。組合放大器和ADC的SNR為67 dB.

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉