高速ADC的性能特性對整個信號處理鏈路的設(shè)計影響巨大。系統(tǒng)設(shè)計師在考慮ADC對基帶影響的同時,還必須考慮對射頻(RF)和數(shù)字電路系統(tǒng)的影響。由于ADC位于模擬和數(shù)字區(qū)域之間,評價和選擇的責(zé)任常常落在系統(tǒng)設(shè)計師身上,而系統(tǒng)設(shè)計師并不都是ADC專家。
還有一些重要因素用戶在最初選擇高性能ADC時常常忽視。他們可能要等到最初設(shè)計樣機將要完成時才能知道所有系統(tǒng)級結(jié)果,而此時已不太可能再選擇另外的ADC。
影響很多無線通信系統(tǒng)的重要因素之一就是低輸入信號電平時的失真度。大多數(shù)無線傳輸?shù)竭_ADC的信號電平遠(yuǎn)低于滿標(biāo)度輸入范圍。為確保多路傳輸信號的功率同時匯集到ADC輸入時不發(fā)生壓縮,信號鏈路的前端增益被設(shè)計成稍微低于ADC的滿標(biāo)度范圍。然而,幾乎所有高速ADC都保證其SFDR性能在輸入電平從滿標(biāo)度的 -1dB。此外,大多數(shù)數(shù)據(jù)表都有寬輸入幅度范圍內(nèi)典型的SFDR圖。用戶應(yīng)該仔細(xì)觀察該曲線,核實運行是否穩(wěn)定和是否可預(yù)知。低輸入幅度上存在任何大步進或鋸齒特性都表明ADC轉(zhuǎn)移函數(shù)中的系統(tǒng)非線性。由于轉(zhuǎn)移函數(shù)線性度和低輸入電平失真密切相關(guān),對最大積分非線性(INL)有嚴(yán)格保證的ADC在低輸入幅度上一般會有更穩(wěn)定的失真性能。
選擇對INL、差分非線性(DNL)、SNR和SFDR等所有關(guān)鍵性能規(guī)格具保證最小或最大值限制的ADC是非常重要。這些規(guī)格在應(yīng)用的整個工作溫度范圍內(nèi)應(yīng)該得到保證。用戶特別需要留意這些關(guān)鍵參數(shù)是否僅在小溫度范圍內(nèi)或室溫下才能保證。高速ADC內(nèi)部的精確運算放大器和快速比較器如果設(shè)計得不夠堅固,它們在溫度變化時可能會發(fā)生很大的變化。選擇沒有寬溫度范圍內(nèi)保證限制的ADC會給設(shè)計帶來不必要的風(fēng)險。
解決方案的尺寸要求也很關(guān)鍵,因為都市基站設(shè)計的PCB面積非常有限。由于使用QFN等小型扁平IC封裝縮減小了ADC本身的面積,總體解決方案面積實際上可能大得多。仔細(xì)察看所推薦的電路會發(fā)現(xiàn)很多高速ADC都需要大量電容值很大的電容器(如10μF),這些電容器比ADC占用的PCB面積大得多。由于存在封裝連接線寄生電感,很多高速ADC需要此類大外部電容器旁路電源和內(nèi)部基準(zhǔn)電路系統(tǒng)。要在最終產(chǎn)品中實現(xiàn)小體積,就要求ADC不僅采用小型封裝,而且還要使這些大的外部旁路電容器尺寸和數(shù)量最小化。
技術(shù)趨勢
除了新穎的電路設(shè)計技術(shù),工藝的進步在低功率高速ADC的開發(fā)中同樣重要。特別值得一提的是,由于數(shù)字技術(shù)最初的驅(qū)使,硅技術(shù)工藝不斷調(diào)整,采用CMOS工藝制造的ADC也因此受益匪淺。
就模擬電路設(shè)計而言,CMOS工藝調(diào)整的關(guān)鍵優(yōu)勢在于更低的功率和更高的速度運作。與僅消耗動態(tài)功率的傳統(tǒng)數(shù)字CMOS電路不同,ADC消耗的大部分功率都是靜態(tài)電流用來偏置放大器和比較器等模擬電路引起的。對給定的模擬偏置電流,更短的通道長度(L)工藝為晶體管提供更高的跨導(dǎo)(gm),這是器件性能的一個關(guān)鍵衡量指標(biāo)。更小的晶體管尺寸也使器件的寄生電容更小。在高速ADC的每一種流水線級上,精確運算放大器等關(guān)鍵電路的模擬穩(wěn)定速度極大程度上由晶體管gm決定。因此,在給定總偏置電流情況下,縮短L會使工作速度更快。另一個好處是,電源電壓通常隨著L縮短而降低,因此即使模擬偏置電流保持不變,總體功耗也會降低。通過工藝精細(xì)程度的調(diào)整,ADC設(shè)計師可以靈活地在給定功率級別上提高速度或在給定速度時降低功率。
然而,模擬電路的工藝調(diào)整存在一個嚴(yán)重的缺點。由于降低了電源電壓,ADC的滿標(biāo)度輸入范圍也必須降低,以便為運算放大器等模擬電路系統(tǒng)提供足夠的電壓空間。更小的輸入范圍導(dǎo)致更低的信號功率,SNR會隨著工藝調(diào)整而下降。低功率、高性能設(shè)計方案的挑戰(zhàn)還在于降低ADC產(chǎn)生的噪聲,以保持足夠的信噪比。
凌力爾特低功率高性能ADC介紹
很明顯,低功率、高性能是市場上用戶的主要要求。為滿足市場需求,凌特公司新近推出了幾個高速ADC系列。
LTC2224/2222/2223是引腳兼容的3.3V 12位135/105/80Msps ADC,并為欠采樣而優(yōu)化。LTC2224系列在輸入頻率高達140MHz時具有超過67.5dB的SNR和80dB的SFDR,而在135Msps時僅消耗630mW功率。該高度優(yōu)化的跟蹤與保持設(shè)計對高達400MHz的輸入頻率持續(xù)保持超過65dB的SNR和75dB的SFDR,在低功率時具有極佳的欠采樣性能。圖2概括了LTC2224的高頻性能。即使是那些消耗功率高得多的器件也極少在高輸入頻率時具有如此的欠采樣性能。如圖3所示,就12位ADC而言,該ADC轉(zhuǎn)移函數(shù)的線性度也很高,可與很多14位器件媲美。如同干凈的轉(zhuǎn)移函數(shù)預(yù)料,小輸入幅度時的失真性能也相當(dāng)穩(wěn)定。LTC2224系列非常適合要求低功率和卓越欠采樣性能的WCDMA PA線性化應(yīng)用。
圖2
圖3
LTC2249/LTC2229系列是引腳兼容的3V 14位/12位ADC,具有高達80Msps的速度。表1概括了這些器件的性能特性。這些高速ADC功率極低,范圍從LTC2249/LTC2229在80Msps時的222mW至LTC2245/LTC2225在10Msps時的60mW。實現(xiàn)這些低功率并未損失性能。例如,如圖4所示,LTC2248(65Msps)對遠(yuǎn)離奈奎斯特頻率(Nyquist Frequency)的輸入保持為74dB SNR和80dB SFDR。通過使用5mm×5mm纖巧型QFN封裝,這兩個系列還實現(xiàn)了小體積。大部分必需的旁路電容都直接集成在芯片上,因此這些器件僅需要少量低值外部旁路陶瓷電容器,就能達到數(shù)據(jù)表所顯示的性能。引腳兼容的LTC2249和LTC2229系列具有高性能,低功耗,小體積的特點。使它們非常適合用于小型WCDMA、GSM和TD-SCDMA等基站。
圖4
表1