當(dāng)前位置:首頁(yè) > 工業(yè)控制 > 工業(yè)控制
[導(dǎo)讀]以RoboCup中型組足球機(jī)器人為實(shí)驗(yàn)平臺(tái),提出一種基于FPGA的全方位移動(dòng)足球機(jī)器人運(yùn)動(dòng)控制系統(tǒng)的實(shí)現(xiàn)方法。首先分析和研究三輪全方位移動(dòng)機(jī)器人的運(yùn)動(dòng)學(xué)特性,建立其運(yùn)動(dòng)控制模型,然后以FPGA為主要處理器,設(shè)計(jì)了PID速度閉環(huán)控制算法,實(shí)現(xiàn)了對(duì)機(jī)器人的精確控制。實(shí)驗(yàn)發(fā)現(xiàn),該設(shè)計(jì)方法具有很好的實(shí)時(shí)性,能夠?qū)θ轿灰苿?dòng)機(jī)器人進(jìn)行快速、準(zhǔn)確的控制。

0 引言
    目前,全方位移動(dòng)機(jī)器人由于具有出色的靈活性,已經(jīng)成為RoboCup中型組足球機(jī)器人比賽中最理想的選擇。而機(jī)器人的運(yùn)動(dòng)控制一直以來(lái)都是直接影響機(jī)器人性能的主要因素,也是移動(dòng)機(jī)器人研究的熱點(diǎn)之一。本文研究了一種用FPGA技術(shù)實(shí)現(xiàn)三輪全方位移動(dòng)機(jī)器人運(yùn)動(dòng)控制系統(tǒng)的方法,與雙DSP結(jié)構(gòu),DSP+CPLD結(jié)構(gòu),以及DSP+專(zhuān)用集成電路結(jié)構(gòu)等相比,該方法具有簡(jiǎn)單可靠,擴(kuò)展性強(qiáng)等特點(diǎn)。且FPGA設(shè)計(jì)簡(jiǎn)單,使用方便,開(kāi)發(fā)周期短,能夠?qū)崿F(xiàn)真正的SOPC系統(tǒng)。

1 全方位移動(dòng)機(jī)器人運(yùn)動(dòng)模型
    設(shè)世界坐標(biāo)系下機(jī)器人的速度為ε=[vx,vy,φ],則當(dāng)vx=O,vy≠0,φ=O時(shí),機(jī)器人做前后方向的直線運(yùn)動(dòng),當(dāng)vx≠0,vy=0,φ=0時(shí),機(jī)器人做左右方向的直線運(yùn)動(dòng),當(dāng)vx=0,vy=0,φ≠0時(shí),機(jī)器人做自轉(zhuǎn)運(yùn)動(dòng)。圖1中,ω1,ω2,ω3為3個(gè)主動(dòng)輪的轉(zhuǎn)動(dòng)角速度,R為全向輪半徑;L1,L2,L3為機(jī)器人車(chē)體中心到3組全向輪中心的水平距離,設(shè)有L1=L2=L3=L。α為前兩輪之間的夾角,另外2個(gè)夾角均為180°-α/2。則機(jī)器人坐標(biāo)系下的速度到三輪速度之間的關(guān)系如下:
   


    由式(1)可以看到:知道了機(jī)器人在平面世界坐標(biāo)系中的速度要求后,便可以得到主動(dòng)輪的速度要求,進(jìn)而對(duì)電機(jī)發(fā)出相應(yīng)的控制信號(hào)。
2運(yùn)動(dòng)控制方案本系統(tǒng)總體設(shè)計(jì)思路如圖2所示,首先通過(guò)RS 232接口,實(shí)現(xiàn)PC機(jī)與底層控制芯片F(xiàn)PGA的通信,F(xiàn)PGA在接收到相關(guān)的機(jī)器人坐標(biāo)系下的速度后,將機(jī)器人坐標(biāo)系下的速度值轉(zhuǎn)化成機(jī)器人3個(gè)全向輪子的角速度,將得到的角速度值計(jì)算出相應(yīng)的占空比,生成相應(yīng)占空比的PWM波形,輸出信號(hào)接到直流伺服電機(jī)驅(qū)動(dòng)器,然后通過(guò)FPGA采集正交編碼盤(pán)信號(hào),計(jì)算出輪子實(shí)際的角速度值,做PID速度閉環(huán)控制。鑒于FPGA模塊復(fù)制的優(yōu)勢(shì),這里對(duì)每個(gè)全向輪分別做了PID閉環(huán)控制。

3 系統(tǒng)硬件設(shè)計(jì)
    采用的三輪全方位移動(dòng)機(jī)器人系統(tǒng)框圖如圖3所示,上位機(jī)主要完成圖像信息的采集、處理、路徑規(guī)劃,并實(shí)現(xiàn)與場(chǎng)外裁判盒的通信。下位機(jī)主要是FPGA,主要實(shí)現(xiàn)三輪編碼信號(hào)的采集,PID速度閉環(huán)控制,踢球控制,電機(jī)控制信號(hào)的產(chǎn)生,還有其他的傳感器信息的采集等,并負(fù)責(zé)與上位機(jī)之間的信息交互。本設(shè)計(jì)只是完成了下位機(jī)運(yùn)動(dòng)控制部分。


3.1 正交編碼信號(hào)采集與測(cè)速實(shí)現(xiàn)
    增量式光電編碼器輸出信號(hào)如圖4所示。


    A、B兩相信號(hào)是相位相差90°的正交方波脈沖串,每個(gè)脈沖代表被測(cè)對(duì)象旋轉(zhuǎn)了一定的角度,A、B之間的相位關(guān)系則反映了被測(cè)對(duì)象的旋轉(zhuǎn)方向。在FPGA中設(shè)計(jì)4倍頻和鑒向電路,本設(shè)計(jì)采用2路輸出:一路輸出方向,另一路輸出脈沖,并對(duì)鑒向倍頻電路進(jìn)行仿真,如圖5所示。


    根據(jù)脈沖計(jì)數(shù)來(lái)測(cè)量轉(zhuǎn)速的方法有M法、T法以及M/T法3種。M法適用于高速測(cè)量場(chǎng)合,在低速時(shí)有較大的誤差;而T法,恰恰相反,在低速時(shí)測(cè)量準(zhǔn)確,高速時(shí)誤差較大。


    本設(shè)計(jì)采用文獻(xiàn)所描述的方法。該方法如圖6所示,設(shè)定參考閘門(mén)時(shí)間為固定的1個(gè)值,它只是作為參考信號(hào)和編碼信號(hào)共同確定實(shí)際的閘門(mén)時(shí)間。這樣確定的閘門(mén)時(shí)間為被測(cè)信號(hào)的整周期倍,能夠有效提高測(cè)量精度。則測(cè)得的速度為:
   
3.2 增量式PID控制原理及其FPGA實(shí)現(xiàn)
    實(shí)際機(jī)器人的數(shù)學(xué)模型不可避免地存在一定程度的參數(shù)不確定性,且三輪全方位移動(dòng)機(jī)器人的正交全向輪在行走時(shí)會(huì)與地面交替接觸而產(chǎn)生一些不確定摩擦轉(zhuǎn)矩,這些都會(huì)給機(jī)器人的精確控制帶來(lái)難度。為了對(duì)三輪全方位移動(dòng)機(jī)器人進(jìn)行精確的控制,系統(tǒng)采用PID速度閉環(huán)控制算法對(duì)機(jī)器人的3個(gè)全向輪進(jìn)行速度調(diào)節(jié)。
    令采樣周期為T(mén)S,將連續(xù)PID公式離散化后可得到數(shù)字PID算法表達(dá)式:


式中:k為采樣序號(hào);u(k)為第k個(gè)采樣時(shí)刻的計(jì)算機(jī)輸出值;e(k)為第k個(gè)采樣時(shí)刻的計(jì)算機(jī)輸入誤差值;e(k-1)為第k-1個(gè)采樣時(shí)刻的輸入誤差值;Kp為比例系數(shù);KI為積分系數(shù);KD為微分系數(shù)。
    這種算法雖然比較直觀,但由于是全量輸出,所以每次輸出均與過(guò)去的所有狀態(tài)有關(guān),計(jì)算時(shí)要對(duì)e(k)進(jìn)行累加,計(jì)算機(jī)運(yùn)算量大。
    于是產(chǎn)生了增量式PID算法:
   
   

    上述公式(7)為增量式PID控制算法。只輸出控制增量,誤動(dòng)作影響較小,且控制增量只與最近幾次的采樣值有關(guān),容易通過(guò)加權(quán)處理獲得比較好的控制效果。
    根據(jù)以上公式推導(dǎo),結(jié)合FPGA的工作特點(diǎn),本文設(shè)計(jì)了適合FPGA的增量式PID實(shí)現(xiàn)結(jié)構(gòu)。
    由圖7可以看出,增量式PID控制算法程序結(jié)構(gòu),只要最近的3個(gè)誤差采樣值就可以加權(quán)計(jì)算。這在FPGA內(nèi)部完全可以并行實(shí)現(xiàn),移位部分結(jié)構(gòu)類(lèi)似FIR濾波器的實(shí)現(xiàn)結(jié)構(gòu),難點(diǎn)是FPGA設(shè)計(jì)時(shí)對(duì)有符號(hào)數(shù)的熟練操作和保證累加器不能溢出。


    一種高效的硬件測(cè)試手段和系統(tǒng)測(cè)試方法,它能夠獲取并顯示可編程片上系統(tǒng)(SOPC)的實(shí)時(shí)信號(hào),它可以隨設(shè)計(jì)文件一起下載到FPGA中,用于捕捉FPGA內(nèi)部節(jié)點(diǎn)和I/0引腳的狀態(tài),就如同使用真的邏輯分析儀一樣,對(duì)設(shè)計(jì)進(jìn)行在線仿真,但又不影響硬件系統(tǒng)的工作。為了檢驗(yàn)測(cè)得的全向輪實(shí)際速度值是否準(zhǔn)確,對(duì)設(shè)計(jì)的測(cè)速模塊進(jìn)行了在線仿真。設(shè)定每個(gè)全向輪以固定的速度轉(zhuǎn)動(dòng),對(duì)比測(cè)得的實(shí)際速度值和設(shè)定的速度值,如圖8所示。


    在嵌入式邏輯分析儀中,對(duì)PID模塊也進(jìn)行了在線測(cè)試。實(shí)驗(yàn)條件:在空載條件下,頻繁變化電機(jī)的速度,通過(guò)嵌入式邏輯分析儀觀察FPGA內(nèi)部PID調(diào)節(jié)后的速度值和設(shè)定值,圖9所示為一號(hào)全向輪的速度設(shè)定值與反饋速度值。


    三輪全方位移動(dòng)機(jī)器人與雙輪差速不同,具有很大的靈活性,況且由于3個(gè)全向輪的負(fù)載的不同,使得機(jī)器人不能走出精確的直線。而要實(shí)現(xiàn)機(jī)器人的精確控制,一個(gè)前提就是讓它能夠走出很直的直線。為檢驗(yàn)機(jī)器人控制性能,設(shè)計(jì)了如下實(shí)驗(yàn):機(jī)器人以固定速度分別向前后左右4個(gè)方向行走,先觀察沒(méi)有加入PID控制算法時(shí)的情況,然后再觀察加入PID控制算法時(shí)的情況。實(shí)驗(yàn)的結(jié)果如表1所示。


    分析:由于機(jī)器人的3個(gè)全向輪所承受的負(fù)載不一樣,即在相同的占空比的PWM下,3個(gè)輪子的實(shí)際速度并不相同,這就使得三輪速度不可能準(zhǔn)確合成機(jī)器人的速度,進(jìn)而影響機(jī)器人的控制軌跡。根據(jù)圖1所示的機(jī)器人1號(hào)輪和3號(hào)輪負(fù)載相當(dāng),2號(hào)輪子承受的負(fù)載較大,沒(méi)有加入PID控制器時(shí),前后運(yùn)動(dòng)雖然在一定范圍內(nèi)近似直線,但是機(jī)器人運(yùn)行的速度達(dá)不到預(yù)期設(shè)定的速度,左右運(yùn)動(dòng)軌跡就是一個(gè)圓,而且設(shè)定的機(jī)器人左右移動(dòng)速度大小還決定了機(jī)器人是朝順時(shí)針?lè)较蜻€是逆時(shí)針?lè)较蜣D(zhuǎn)圈。加入PID控制算法后,輪子的速度得到校正,機(jī)器人能夠以預(yù)期設(shè)定的速度前后左右運(yùn)動(dòng),特別是左右運(yùn)動(dòng)在一定范圍內(nèi)近似為直線,不再是圓圈??梢?jiàn)PID閉環(huán)控制算法明顯提高了機(jī)器人的控制性能。

5 結(jié)語(yǔ)
    針對(duì)目前常見(jiàn)的以DSP為核心實(shí)現(xiàn)足球機(jī)器人底層運(yùn)動(dòng)控制系統(tǒng)的方案,提出了一種采用FPGA實(shí)現(xiàn)三輪全方位移動(dòng)足球機(jī)器人的底層運(yùn)動(dòng)控制系統(tǒng)的方法。通過(guò)在三輪足球機(jī)器人上的應(yīng)用實(shí)踐,發(fā)現(xiàn)這種采用FPGA實(shí)現(xiàn)的方案有很好的實(shí)時(shí)性,精確度較高,而且由于FPGA本身的引腳多特點(diǎn),其可擴(kuò)展性較強(qiáng),比如可以通過(guò)串口配置數(shù)字羅盤(pán)等外圍信息傳感器等其他傳感器,同時(shí),本設(shè)計(jì)對(duì)于研究多電機(jī)的機(jī)器人運(yùn)動(dòng)控制系統(tǒng)的實(shí)現(xiàn)方案有重要的參考價(jià)值和實(shí)用價(jià)值。
    另外,由于全向輪的隨動(dòng)性較強(qiáng),且易打滑,在實(shí)行精確控制的時(shí)候方向容易受到影響,而且PID閉環(huán)控制算法反應(yīng)時(shí)間較長(zhǎng),參數(shù)還需要更多時(shí)間的調(diào)試,在以后的研究中,我們將研究更為精確的控制算法,實(shí)現(xiàn)對(duì)機(jī)器人的精確控制。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專(zhuān)欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車(chē)的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車(chē)技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車(chē)工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車(chē)。 SODA V工具的開(kāi)發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車(chē) 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶(hù)希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開(kāi)幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱(chēng),數(shù)字世界的話(huà)語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱(chēng)"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉