當(dāng)前位置:首頁 > 通信技術(shù) > 通信技術(shù)
[導(dǎo)讀] RFID(Radio Frequency。Identification,射頻識別技術(shù))是自動識別技術(shù)的一種,通過無線射頻方式進行非接觸雙向數(shù)據(jù)通信,對目標(biāo)加以識別并獲取相關(guān)數(shù)據(jù)。它的核心部件是讀寫器和電子標(biāo)簽,通過相距幾厘米到幾米


    RFID(Radio Frequency。Identification,射頻識別技術(shù))是自動識別技術(shù)的一種,通過無線射頻方式進行非接觸雙向數(shù)據(jù)通信,對目標(biāo)加以識別并獲取相關(guān)數(shù)據(jù)。它的核心部件是讀寫器和電子標(biāo)簽,通過相距幾厘米到幾米距離內(nèi)讀寫器發(fā)射的無線電波,可以讀取電子標(biāo)簽內(nèi)存儲的信息,識別電子標(biāo)簽代表的物品、人和器具的身份。RFID技術(shù)在國內(nèi)外得到了大量的應(yīng)用,在公共交通、地鐵、校園、社會保障等領(lǐng)域均有應(yīng)用。本文主要通過實際工作中對于各種RFID讀寫系統(tǒng)的對比,總結(jié)研究RFID讀寫器天線設(shè)計中比較實用的方法。


1 實際RFID天線設(shè)計主要考慮物理參量
1.1 磁場強度
    運動的電荷或者說電流會產(chǎn)生磁場,磁場的大小用磁場強度來表示。RFID天線的作用距離,與天線線圈電流所產(chǎn)生的磁場強度緊密相關(guān)。
    圓形線圈的磁場強度(在近場耦合有效的前提下,近場耦合有效與否的判斷在1.3節(jié))可用式(1)進行計算:
   
    式中:H是磁場強度;I是電流強度;N為匝數(shù);R為天線半徑;x為作用距離。
    對于邊長ab的矩形導(dǎo)體回路,在距離為x處的磁場強度曲線可用下式計算。

    
    結(jié)果證實:在與天線線圈距離很小(x<R)的情況下,磁場強度的上升是平緩的。較小的天線在其中心(距離為0)處呈現(xiàn)出較高的磁場強度,相對來講,較大的天線在較遠的距離(x>R)處呈現(xiàn)出較高的磁場強度。在電感耦合式射頻識別系統(tǒng)的天線設(shè)計中,應(yīng)當(dāng)考慮這種效應(yīng),如圖1所示。

1.2 最佳天線直徑
    在與發(fā)射天線的距離x為常數(shù)并簡單地假定發(fā)射天線線圈中電流I不變的情況下,如果改變發(fā)送天線的半徑R時,就可以根據(jù)距離x與天線半徑R之間的關(guān)系得到最大的磁場強度H。這意味著:對于每種射頻識別系統(tǒng)的閱讀器作用距離都對應(yīng)有一個最佳的天線半徑R。如果選擇的天線半徑過大,那么在與發(fā)射天線的距離x=0處,磁場強度是很小的;相反,如果天線半徑的選擇太小,那么其磁場強度則以z的三次方的比例衰減,如圖2所示。

    不同的閱讀器作用距離,有著不同的天線最佳半徑,它對應(yīng)著磁場強度曲線最大值。
    從數(shù)學(xué)上來說,也即對R求導(dǎo),如式(3)所示:


        從公式的零點中計算是拐點以及函數(shù)的最大值。
   
    發(fā)射天線的最佳半徑對應(yīng)于最大期望閱讀器的2孺值。第二個零點的負號表示導(dǎo)電路的磁場強度在x軸的兩個方向傳播。這里需要指出的是,使用此式的前提條件,是近場耦合有效。下面簡介近場耦合的概念。
1.3 近場耦合
    真正使用前面所提到的公式時,有效的邊界條件為:
    d《R以及x<λ/2π,原因是當(dāng)超出上述范圍時,近場耦合便失去作用了,開始過渡到遠距離的電磁場。一個導(dǎo)體回路上的初始磁場是從天線上開始的。在磁場的傳輸過程中,由于感應(yīng)的增加也形成電場。這樣,最原始的純磁場就連續(xù)不斷地轉(zhuǎn)換成了電磁場。當(dāng)距離大于λ/2π的時候,電磁場最終擺脫天線,并作為電磁波進入空間。在作為電磁波進入空間之前的這個范圍,就叫做天線的近場,本文所涉及的RFID天線設(shè)計,是基于近場耦合的概念。所以距離應(yīng)當(dāng)限定在上述的范圍之內(nèi)。
1.4 調(diào)諧
    RFID系統(tǒng)讀寫器可以等效為一個R-L-C串聯(lián)電路,其中R為繞線線圈的電阻,L為天線自身的電感。一般調(diào)諧過程當(dāng)中,由于天線線圈本身的電容對于諧振的影響很小,可以忽略不計,故為了使閱讀器在工作頻率下天線線圈獲得最大的電流,需要外加一個電容C,完成對天線的調(diào)諧,達到這一目的。而調(diào)諧電容,天線的電感以及工作頻率之間的關(guān)系,可以通過以下湯姆遜公式求得,即:
   
1.5 電感的估算
    電感量值的物理意義是:在電流包圍的總面積中產(chǎn)生的磁通量與導(dǎo)體回路包圍的電流強度之比。實際RFID天線調(diào)試的時候,讀寫器天線電感量值可以通過阻抗分析儀測出,在條件有限的情況下,也常采用估算公式進行估算。假定導(dǎo)體的直徑d與導(dǎo)體回路直徑D之比很小(d/D<0.001),則導(dǎo)體回路的電感可簡單地近似為:
   
    式中:N為繞線天線的匝數(shù);R為天線線圈的半徑;d為導(dǎo)體的內(nèi)徑;μ0為自由空間磁導(dǎo)率。
    線圈匝數(shù)還有以下的近似公式進行估算,在實際應(yīng)用中,兩個公式可以進行對照使用:
    
    式中:L為線圈電感,單位為nH;A為天線線圈包圍面積,單位為cm2;D為導(dǎo)線直徑,單位為cm。
1.6 天線的品質(zhì)因數(shù)
    天線的性能還與它的品質(zhì)因數(shù)有關(guān)。Q既影響能量的傳輸效率,也影響頻率的選擇性。過高的Q值雖然能使天線的輸出能量增大,但是同時,讀寫器的通帶特性也會受到影響。所以在實際調(diào)節(jié)Q值的時候,要進行折中的考慮。調(diào)節(jié)Q值,是通過在R-L-C等效電路上面串接一個電阻R1實現(xiàn)的,具體的公式如下:
    Q=ωL/(R+R1) (8)


2 實際調(diào)試
    RFID天線的設(shè)計需要考慮很多因素,上述幾個是實際的調(diào)試過程中的重要物理參量。明確了上述物理參量之后,在給定期望距離以及工作頻率等RFID系統(tǒng)要求之后,在條件有限的情況下,就可以根據(jù)需要進行簡單的RFID天線設(shè)計了。下面給出一個應(yīng)用于軌道交通的RFID天線設(shè)計的實際例子。此處設(shè)計一個期望最大作用距離為1 cm,工作頻率在125 kHz的繞線天線,系統(tǒng)要求閱讀器天線線圈的半徑盡量小,不超過1 cm。具體步驟如下:
    首先確定天線的最佳半徑,不宜太大也不宜太小,理想的最佳天線半徑應(yīng)當(dāng)為期望作用距離的2倍,在實際設(shè)計的時候,應(yīng)當(dāng)根據(jù)設(shè)計需求在設(shè)計中進行折衷的考慮,在保證系統(tǒng)要求的前提下,盡可能地接近最佳值。本例中閱讀器天線的最佳半徑應(yīng)當(dāng)為1.4 cm,但是考慮到系統(tǒng)對于天線半徑尺寸的要求不超過1 cm,所以實際中取半徑為0.8 cm。在允許的條件下,為使效果更好,可以加入一個帶有適量鐵氧體的天線骨架、天線以及閱讀器板子,如圖3所示。

    其次,再根據(jù)工作頻率以及系統(tǒng)本身的要求確定電感量的大致范圍,本系統(tǒng)中取電感量在600~800μH。再者,用電感量與匝數(shù)關(guān)系的經(jīng)驗公式大致估計繞線的匝數(shù)。本例中,取電感量在700μH,用直徑為0.27 mm的銅導(dǎo)線進行繞制天線。由公式計算出匝數(shù)大概在266圈左右,繞完后,根據(jù)湯姆遜公式選取所用的調(diào)諧電容。用相關(guān)的儀器(如頻譜儀和矢量網(wǎng)絡(luò)分析儀)測量出諧振頻率,這個時候,由于電感量只是估算的,而且選用的匹配電容也是具有一定標(biāo)稱值的,并不能做到與計算一致,所以總是會存在誤差。
    由于調(diào)諧的電容是已知的,而且有固定的標(biāo)稱值,可以根據(jù)湯姆遜公式由這個時候測得的頻率反推出在恰好達到此頻率的時候所需要的電感的大小,即繞線線圈電感??搭l率的偏移情況,按電感量估算公式逐步增加或者減少線圈匝數(shù),直到達到指定的諧振頻率125 kHz。用矢量網(wǎng)絡(luò)分析儀以及頻譜儀測諧振頻率的實際圖片如圖4,圖5所示。

3 結(jié) 語
    根據(jù)矢量網(wǎng)絡(luò)分析儀以及頻譜分析儀的顯示,本RFID天線已經(jīng)成功諧振在125 kHz。接下來便可根據(jù)所提到的公式,計算出調(diào)Q值所用的電阻的大小,然后根據(jù)系統(tǒng)的要求進行進一步的聯(lián)調(diào)測試了。實際工程中,RFID讀寫器及標(biāo)簽有各種電路結(jié)構(gòu),但是歸根到底都是等效成R-L-C諧振電路的,比如說PHILIPS的MIFARE系列讀寫器的天線設(shè)計,所以本文對于各種RFID系統(tǒng)天線設(shè)計具有普遍的指導(dǎo)意義。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉