實用噪聲放大器原理
外部噪聲
一些工程師認(rèn)為外部噪聲不應(yīng)該被稱為噪聲,因為它不是隨機(jī)產(chǎn)生的,使用“干擾”一詞也許更恰當(dāng)。首先,簡單談?wù)勅N外部噪聲的主要來源:
RFI耦合
環(huán)境中充斥著各種電磁波,雖然這些射頻干擾信號通常在目標(biāo)帶寬以外,但器件的非線性有時會調(diào)整這些信號,將其帶入目標(biāo)區(qū)域中。特別是連接傳感器的引線較長時,噪聲一般會從輸入引線進(jìn)入電路。
抑制射頻干擾的辦法包括:輸入端濾波、屏蔽和采用雙絞線輸入。
電源噪聲
電子電路抑制電源線信號的能力有限,尤其是頻率較高時,因此必須先消除電源線上的高頻干擾,使其無法到達(dá)低噪聲電路??梢詫﹄娫催M(jìn)行適當(dāng)濾波以及IC本身采取良好的旁路措施來實現(xiàn)。敏感模擬電路與數(shù)字邏輯應(yīng)采用不同的電源,至少應(yīng)深度濾波。
接地環(huán)路
我們經(jīng)??梢詮脑韴D上看到很多的接地符號,但必須注意,在實際電路中任何兩點(diǎn)的電位都不可能完全相等,電流會流經(jīng)地線,從而產(chǎn)生電位差。必須考慮電流如何流動,并將高電流路徑與敏感電路隔離。例如,實用新型接地配置,或者將模擬地層與數(shù)字地層接在一個點(diǎn)上。
內(nèi)部噪聲
內(nèi)部噪聲來源于信號鏈中的電路元件,IC數(shù)據(jù)手冊中相關(guān)的性能規(guī)格就是針對這種噪聲。典型的內(nèi)部噪聲源包括傳感器、電阻、放大器和模數(shù)轉(zhuǎn)換器。
電阻噪聲
電阻噪聲分為兩類:一是內(nèi)部熱噪聲,這種噪聲與電阻構(gòu)造無關(guān),僅取決于總電阻、溫度和帶寬,它與所施加的信號無關(guān);二是附加電流噪聲,通常被稱為過量噪聲,它取決于電阻的構(gòu)造,與熱噪聲不同,電阻電流噪聲與所施加的電壓有關(guān)。薄膜電阻和繞線電阻具有出色的電流噪聲性能,其噪聲主要是內(nèi)部熱噪聲。炭核電阻則不然,一般認(rèn)為其噪聲性能較差,在之后的討論中我們將假設(shè)在低噪聲設(shè)計中使用高質(zhì)量薄膜電阻,因此可以忽略電流噪聲,只專注于熱噪聲。
理想電阻的熱噪聲公式為:
可以看出,熱噪聲取決于溫度、電阻、帶寬和波爾茲曼常數(shù)。但在實際設(shè)計中,并不要求記住這個公式,因為我們有一個非常方便的速算法。
討論噪聲時,平方根符號會一再出現(xiàn),公式中含有一個常數(shù)項,即波爾茲曼常數(shù)k。第二項是溫度,請注意,噪聲隨溫度升高而增大,此溫度的單位為k,因此溫度對噪聲的影響可能不如想象那般大。多數(shù)工程師會忽略溫度對噪聲的影響,請記住你所看到的噪聲規(guī)格僅針對室溫有效。第三項是電阻值,最后一項是帶寬。
應(yīng)該記住這個公式,1kΩ電阻在室溫下的熱噪聲為,即
無論從事何種噪聲相關(guān)工作,這一算式都將使您永遠(yuǎn)受益。這個速算公式可以方便地應(yīng)用于其他電阻值。
放大器噪聲
圖1所示為放大器噪聲模型。放大器噪聲分為兩類:一種是電壓噪聲(VX),另一種是電流噪聲(IX)。在實際電路中,放大器由許多晶體管組成,所有這些晶體管都有噪聲。幸運(yùn)的是,所有晶體管的噪聲都可以折合到放大器的輸入端。
圖1 放大器噪聲模型
電壓噪聲規(guī)格在數(shù)據(jù)手冊中,通常以兩種方式表示,分別是和。查看數(shù)據(jù)手冊中的噪聲特性時,必須了解它是被折合到輸入端還是輸出端。大部分放大器的噪聲特性被折合到輸入端,對于運(yùn)算放大器數(shù)據(jù)手冊,這幾乎是默認(rèn)的習(xí)慣算法。但對于其他類型的固定增益放大器(如差動放大器),噪聲可能被折合到輸出端。請注意,這種輸入噪聲會被放大器放大。例如,對于同相增益為10的放大器,輸出端的噪聲將是指標(biāo)中給出的噪聲的10倍。一些電路配置的噪聲增益可能大于信號增益,反相配置就是一個很好的例子。信號增益為-1的反相配置,其噪聲增益實際上為2。為了確定實際噪聲增益,請將所有外部電壓源短路,同時可以將噪聲放大器的RTI噪聲看做出現(xiàn)在放大器正輸入端的噪聲,如果以這一假設(shè)分析電路,應(yīng)當(dāng)能夠確定噪聲所接受的增益。
儀表放大器的噪聲特性與運(yùn)算放大器稍有不同,對于運(yùn)算放大器,所有內(nèi)部晶體管噪聲都可以折合到輸入端,換言之,所有噪聲源都會按增益比例縮放。儀表放大器則不然,電路中的一些噪聲會按增益比例進(jìn)行縮放,其他噪聲則與增益無關(guān),這里與增益噪聲相關(guān)的噪聲量顯示為eNI,與增益無關(guān)的噪聲量顯示為eNO。數(shù)據(jù)手冊中有二者關(guān)系公式。
除電壓噪聲外,放大器還具有電流噪聲。如果輸入端有電阻,電流噪聲將與之相互作用,產(chǎn)生電壓噪聲。譬如,大多數(shù)源電壓具有一定的電阻。畢竟,將高阻抗信號源轉(zhuǎn)換為低阻抗信號源是使用運(yùn)算放大器的原因之一。電流噪聲流經(jīng)與放大器相連的電阻,產(chǎn)生電壓噪聲。一般來說,放大器的輸入偏置電流越高,則電流噪聲越高。
圖2顯示具有一定源電阻的電壓跟隨器配置,運(yùn)算放大器的電流噪聲會與信號源電阻相互作用,在輸出端產(chǎn)生一定的額外噪聲。圖3顯示反饋路徑中的電阻如何與電流噪聲相互作用,電流噪聲流經(jīng)反饋電阻的并聯(lián)組合,在輸入端產(chǎn)生一個額外噪聲源,然后此噪聲源經(jīng)放大器放大到達(dá)輸出端。
圖2 具有一定源電阻的電壓跟隨器配置
圖3 反饋路徑中電阻與電流噪聲的相互作用
模數(shù)轉(zhuǎn)換器(ADC)噪聲
有時候模數(shù)轉(zhuǎn)換器(ADC)數(shù)據(jù)手冊以Vrms或VP-P的形式提供噪聲特性,但大多數(shù)情況下,該特性用噪聲相對于ADC最大滿量程的關(guān)系來表示,規(guī)定為信噪比(SNR)。數(shù)據(jù)手冊中的噪聲指標(biāo),偶爾也包括失真特性及信納比。緊急情況下,可以使用文中提供的理想公式,但這是理論限值,永遠(yuǎn)比實際值要好。
這里的公式顯示ADC的SNR數(shù)值與Vrms數(shù)值之間的換算關(guān)系,以便比較ADC與放大器的噪聲。有一點(diǎn)必須注意,要確保使用ADC最大輸入范圍內(nèi)的均方根噪聲。
峰峰值噪聲和RMS噪聲
峰峰值噪聲Vrms指波形中波峰與波谷點(diǎn)之間的距離,它僅取決于兩個點(diǎn),有利也有弊。有利的一面是非常容易計算,只需將最大點(diǎn)減去最小點(diǎn);不利的一面是復(fù)驗性不強(qiáng),不太精確。噪聲是一個隨機(jī)過程,因此,這種測量實際上依賴于噪聲波形的極值。采集數(shù)據(jù)的時間越長,則越有可能獲得極值。均方根值噪聲使用波形中的所有點(diǎn),比峰峰值噪聲精確得多,測量的點(diǎn)越多,均方根數(shù)值越精確。不利的一面是,由于要使用所有點(diǎn),因此計算時間較長。
關(guān)于峰峰值和均方根值測量有一點(diǎn)需要注意,它們會隨帶寬發(fā)生較大變化,對于同一放大器,帶寬越低,噪聲也越低。圖4清楚顯示了這一點(diǎn)。實驗中,我們測量了儀表放大器AD8222在多個不同帶寬時的噪聲,可以清楚的看到帶寬對于噪聲的影響之大。帶寬每提高十倍,噪聲增加三倍。由于這些測量依賴于帶寬,因此有幾點(diǎn)需要注意:首先,需要了解電路的帶寬特性,需要確保測量儀器的帶寬高于電路的帶寬,只有這樣,才能獲得精確的讀數(shù)。此外,使用數(shù)字萬用表時,規(guī)定均方根值噪聲或峰峰值噪聲時,同時必須明確特定的帶寬。對于絕大多數(shù)數(shù)據(jù)手冊,帶寬為0.1Hz至10Hz頻帶。
圖4 AD8222在多個不同帶寬時的噪聲
頻譜密度圖使均方根測量更進(jìn)一步,它實際上是將噪聲測量分為不同的區(qū)間,這樣便可以明確哪些頻率具有較多的噪聲成分。圖5來自AD8295數(shù)據(jù)手冊,顯示了許多測量的平均組合值。由于頻譜密度圖將測量分為許多區(qū)間,因此需要大量的數(shù)據(jù)才能獲得一張清晰的圖。
圖5 AD8295的頻譜密度圖
在較低頻率時,大多數(shù)放大器的噪聲曲線會斜升,噪聲密度與頻率成反比,因此將它稱為1/f噪聲。如果沿1/f斜率畫一條直線,與水平噪聲線相交,就可以得到1/f轉(zhuǎn)折頻率。
噪聲計算
噪聲的加法規(guī)則為噪聲的平方和,假設(shè)噪聲源不相關(guān),這一假設(shè)在絕大多數(shù)情況下是成立的,噪聲的乘法和除法規(guī)則與一般信號相同。
第一,在噪聲計算時,有幾點(diǎn)需要注意:室溫下,1kΩ電阻對應(yīng)于的噪聲,這一速算公式可以方便地應(yīng)用于其他電阻值,只需乘以電阻的平方根。
第二,在對信號源求和時,可以忽略較小的項。噪聲加法規(guī)則為平方和,如果一個噪聲信號只有主導(dǎo)噪聲信號的1/5,則其貢獻(xiàn)的額外噪聲只有1/25。
第三點(diǎn)是對第一點(diǎn)的擴(kuò)展,如果第一增益級的增益足夠大,則可以忽略其后的一切噪聲。
低噪聲系統(tǒng)的設(shè)計技巧
低噪聲系統(tǒng)設(shè)計的第一個竅門是在前級應(yīng)用中盡可能多的增益,圖6顯示的是一個放大器前端的兩個例子,增益為10??梢钥闯觯瑢⑺性鲆鎽?yīng)用于第一級,比將增益分布于兩級要好得多。請注意,有時最佳帶寬性能的要求可能與最佳噪聲性能的要求相沖突。對于帶寬,我們希望每個增益級具有近似的增益,而對于噪聲,我們則希望第一級具有全部的增益。
圖6 放大器前端
第二個竅門是注意源阻抗。這樣做有兩個原因:第一,源阻抗越大,則系統(tǒng)噪聲越大;第二,放大器必須與源阻抗匹配良好,如果源阻抗較高,電流噪聲噪聲特性可能比電壓噪聲特性更重要。
第三個竅門是要注意反饋電阻,如果選擇超低噪聲運(yùn)算放大器,卻使用很大的反饋電阻,則不可能實現(xiàn)低噪聲電路,在同相(圖7)或反相配置中,注意反饋電阻相當(dāng)于折合到輸出端的噪聲源。而其他電阻則相當(dāng)于輸入端的電壓源,更準(zhǔn)確的說,是反相配置輸入端的電壓源。前文已經(jīng)談到,設(shè)計低噪聲系統(tǒng)時,第一級應(yīng)用有高增益,這種情況下Rg噪聲占主導(dǎo)地位。
圖7 同相運(yùn)算放大器的噪聲模型