當(dāng)前位置:首頁 > 通信技術(shù) > 通信技術(shù)
[導(dǎo)讀]摘要:建立了Buck電路在連續(xù)電流模式下的小信號數(shù)學(xué)模型,并根據(jù)穩(wěn)定性原則分析了電壓模式和電流模式控制下的環(huán)路設(shè)計(jì)問題。 關(guān)鍵詞:開關(guān)電源;小信號模型;電壓模式控制;電流模式控制     0 引言 設(shè)計(jì)一

摘要:建立了Buck電路在連續(xù)電流模式下的小信號數(shù)學(xué)模型,并根據(jù)穩(wěn)定性原則分析了電壓模式和電流模式控制下的環(huán)路設(shè)計(jì)問題。

關(guān)鍵詞:開關(guān)電源;小信號模型;電壓模式控制;電流模式控制

   

0    引言

    設(shè)計(jì)一個(gè)具有良好動(dòng)態(tài)和靜態(tài)性能的開關(guān)電源時(shí),控制環(huán)路的設(shè)計(jì)是很重要的一個(gè)部分。而環(huán)路的設(shè)計(jì)與主電路的拓?fù)浜蛥?shù)有極大關(guān)系。為了進(jìn)行穩(wěn)定性分析,有必要建立開關(guān)電源完整的小信號數(shù)學(xué)模型。在頻域模型下,波特圖提供了一種簡單方便的工程分析方法,可用來進(jìn)行環(huán)路增益的計(jì)算和穩(wěn)定性分析。由于開關(guān)電源本質(zhì)上是一個(gè)非線性的控制對象,因此,用解析的辦法建模只能近似建立其在穩(wěn)態(tài)時(shí)的小信號擾動(dòng)模型,而用該模型來解釋大范圍的擾動(dòng)(例如啟動(dòng)過程和負(fù)載劇烈變化過程)并不完全準(zhǔn)確。好在開關(guān)電源一般工作在穩(wěn)態(tài),實(shí)踐表明,依據(jù)小信號擾動(dòng)模型設(shè)計(jì)出的控制電路,配合軟啟動(dòng)電路、限流電路、鉗位電路和其他輔助部分后,完全能使開關(guān)電源的性能滿足要求。開關(guān)電源一般采用Buck電路,工作在定頻PWM控制方式,本文以此為基礎(chǔ)進(jìn)行分析。采用其他拓?fù)涞拈_關(guān)電源分析方法類似。

1    Buck電路電感電流連續(xù)時(shí)的小信號模型

    圖1為典型的Buck電路,為了簡化分析,假定功率開關(guān)管S和D1為理想開關(guān),濾波電感L為理想電感(電阻為0),電路工作在連續(xù)電流模式(CCM)下。Re為濾波電容C的等效串聯(lián)電阻,Ro為負(fù)載電阻。各狀態(tài)變量的正方向定義如圖1中所示。

圖1    典型Buck電路

    S導(dǎo)通時(shí),對電感列狀態(tài)方程有

    L=Uin Uo    (1)

    S斷開,D1續(xù)流導(dǎo)通時(shí),狀態(tài)方程變?yōu)?

    L=-Uo    (2)

    占空比為D時(shí),一個(gè)開關(guān)周期過程中,式(1)及式(2)分別持續(xù)了DTs和(1-DTs的時(shí)間(Ts為開關(guān)周期),因此,一個(gè)周期內(nèi)電感的平均狀態(tài)方程為

    L=D(UinUo)+(1-D)(-Uo)=DUinUo    (3)

    穩(wěn)態(tài)時(shí),=0,則DUin=Uo。這說明穩(wěn)態(tài)時(shí)輸出電壓是一個(gè)常數(shù),其大小與占空比D和輸入電壓Uin成正比。

    由于電路各狀態(tài)變量總是圍繞穩(wěn)態(tài)值波動(dòng),因此,由式(3)得

    L=(Dd)(Uin+)-(Uo+)    (4)

    式(4)由式(3)的穩(wěn)態(tài)值加小信號波動(dòng)值形成。上標(biāo)為波浪符的量為波動(dòng)量,dD的波動(dòng)量。式(4)減式(3)并略去了兩個(gè)波動(dòng)量的乘積項(xiàng)得

    L=DdUin-    (5)

由圖1,又有

    iL=C+    (6)

    Uo=UcReC    (7)

式(6)及式(7)不論電路工作在哪種狀態(tài)均成立。由式(6)及式(7)可得

    iLReC=(UoCRo)    (8)

    式(8)的推導(dǎo)中假設(shè)Re<<Ro。由于穩(wěn)態(tài)時(shí)=0,=0,由式(8)得穩(wěn)態(tài)方程為iL=Uo/Ro。

這說明穩(wěn)態(tài)時(shí)電感電流平均值全部流過負(fù)載。對式(8)中各變量附加小信號波動(dòng)量得

    iL++ReC=〔Uo++CRo〕(9)

式(9)減式(8)得

    +ReC=(+CRo)(10)

將式(10)進(jìn)行拉氏變換得

    (s)=    (11)

    一般認(rèn)為在開關(guān)頻率的頻帶范圍內(nèi)輸入電壓是恒定的,即可假設(shè)=0并將其代入式(5),將式(5)進(jìn)行拉氏變換得

    sL(s)=d(s)Uin-(s)    (12)

由式(11),式(12)得

    =Uin    (13)

    =·    (14)

式(13),式(14)便為Buck電路在電感電流連續(xù)時(shí)的控制-輸出小信號傳遞函數(shù)。

2    電壓模式控制(VMC)

    電壓模式控制方法僅采用單電壓環(huán)進(jìn)行校正,比較簡單,容易實(shí)現(xiàn),可以滿足大多數(shù)情況下的性能要求,如圖2所示。

    圖2中,當(dāng)電壓誤差放大器(E/A)增益較低、帶寬很窄時(shí),Vc波形近似直流電平,并有

    D=Vc/Vs(15)

    d=/Vs(16)

式(16)為式(15)的小信號波動(dòng)方程。整個(gè)電路的環(huán)路結(jié)構(gòu)如圖3所示。

    圖3沒有考慮輸入電壓的變化,即假設(shè)=0。圖3中,(一般為0)及分別為電壓給定與電壓輸出的小信號波動(dòng);KFB=UREF/Uo,為反饋系數(shù);誤差e為輸出采樣值偏離穩(wěn)態(tài)點(diǎn)的波動(dòng)值,經(jīng)電壓誤差放大器KEA放大后,得;KMOD為脈沖寬度調(diào)制器增益,KMOD=d/=1/Vs;KPWR為主電路增益,KPWR=/d=Uin;KLC為輸出濾波器傳遞函數(shù),KLC=。

圖2    電壓模式控制示意圖和相關(guān)波形 

圖3    開關(guān)電源的電壓模式控制反饋環(huán)路圖

    在已知環(huán)路其他部分的傳遞函數(shù)表達(dá)式后,即可設(shè)計(jì)電壓誤差放大器了。由于KLC提供了一個(gè)零點(diǎn)和兩個(gè)諧振極點(diǎn),因此,一般將E/A設(shè)計(jì)成PI調(diào)節(jié)器即可,KEA=KP(1+ωz/s)。其中ωz用于消除穩(wěn)態(tài)誤差,一般取為KLC零極點(diǎn)的1/10以下;KP用于使剪切頻率處的開環(huán)增益以-20dB/十倍頻穿越0dB線,相角裕量略小于90°。

    VMC方法有以下缺點(diǎn):

    1)沒有可預(yù)測輸入電壓影響的電壓前饋機(jī)制,對瞬變的輸入電壓響應(yīng)較慢,需要很高的環(huán)路增益;

    2)對由LC產(chǎn)生的二階極點(diǎn)(產(chǎn)生180°的相移)沒有構(gòu)成補(bǔ)償,動(dòng)態(tài)響應(yīng)較慢。

    VMC的缺點(diǎn)可用下面將要介紹的CMC方法克服。

3    平均電流模式控制(Average  CMC)

    平均電流模式控制含有電壓外環(huán)和電流內(nèi)環(huán)兩個(gè)環(huán)路,如圖4所示。電壓環(huán)提供電感電流的給定,電流環(huán)采用誤差放大器對送入的電感電流給定(Vcv)和反饋信號(iLRs)之差進(jìn)行比較、放大,得到的誤差放大器輸出Vc再和三角波Vs進(jìn)行比較,最后即得控制占空比的開關(guān)信號。圖4中Rs為采樣電阻。對于一個(gè)設(shè)計(jì)良好的電流誤差放大器,Vc不會是一個(gè)直流量,當(dāng)開關(guān)導(dǎo)通時(shí),電感電流上升,會導(dǎo)致Vc下降;開關(guān)關(guān)斷,電感電流下降時(shí),會導(dǎo)致Vc上升。電流環(huán)的設(shè)計(jì)原則是,不能使Vc上升斜率超過三角波的上升斜率,兩者斜率相等時(shí)就是最優(yōu)。原因是:如果Vc上升斜率超過三角波的上升斜率,會導(dǎo)致Vc峰值超過Vs的峰值,在下個(gè)周波時(shí)VcVs就可能不會相交,造成次諧波振蕩。

圖4    開關(guān)電源平均電流模式控制示意圖

    采用斜坡匹配的方法進(jìn)行最優(yōu)設(shè)計(jì)后,PWM控制器的增益會隨占空比D的變化而變,如圖5所示。

圖5    PWM控制器增益與占空比變化關(guān)系圖

    當(dāng)D很大時(shí),較小的Vc會引起D較大的改變,而D較小時(shí),即使Vc變化很大,D的改變也不大,即增益下降。所以有

    d=D/Vs(17)

    不妨設(shè)電壓環(huán)帶寬遠(yuǎn)低于電流環(huán),則在分析電流環(huán)時(shí)Vcv為常數(shù)。當(dāng)Vc的上升斜率等于三角波斜率時(shí),在開關(guān)頻率fs處,電流誤差放大器的增益GCA

    GCA=GCA(Vo/L)Rs=Vsfs(18)

    GCA=/(Rs)=VsfsL/(UoRs)(19)

高頻下,將式(14)分子中的“1”和分母中的低階項(xiàng)忽略,并化簡,得

    (s)=    (20)

由式(17)及式(20)有

    ==    (21)

將式(19)與式(21)相乘,得整個(gè)電流環(huán)的開環(huán)傳遞函數(shù)為

    ·=    (22)

    將s=2πfc代入上式,并令上式等于1時(shí),可得環(huán)路的剪切頻率fc=fs/(2π)。因此,可將電流環(huán)等效為延時(shí)時(shí)間常數(shù)為一個(gè)開關(guān)周期的純慣性環(huán)節(jié),如圖6所示。

圖6    電流環(huán)的傳遞函數(shù)示意圖 

    顯然,當(dāng)電流誤差放大器的增益GCA小于最優(yōu)值時(shí),電流響應(yīng)的延時(shí)將會更長。

    GCA中一般要在fs處或更高頻處形成一個(gè)高頻極點(diǎn),以使fs以后的電流環(huán)開環(huán)增益以-40dB/dec的斜率下降,這樣雖然使相角裕量稍變小,但可以消除電流反饋波形上的高頻毛刺的影響,提高電流環(huán)的抗干擾能力。低頻下一般要加一個(gè)零點(diǎn),使電流環(huán)開環(huán)增益變大,減小穩(wěn)態(tài)誤差。

    整個(gè)環(huán)路的結(jié)構(gòu)如圖7所示。其中KEA,KFB定義如前。可見相對VMC而言(參見圖3),平均CMC消除了原來由濾波電感引起的極點(diǎn)(新增極點(diǎn)fs很大,對電壓環(huán)影響很小),將環(huán)路校正成了一階系統(tǒng),電壓環(huán)增益可以保持恒定,不隨輸入電壓Vin而變,外環(huán)設(shè)計(jì)變得更加容易。

圖7    電壓外環(huán)反饋環(huán)路圖

4    峰值電流模式控制(Peak  CMC)

    平均CMC由于要采樣濾波電感的電流,有時(shí)顯得不太方便,因此,實(shí)踐中經(jīng)常采用一種變通的電流模式控制方法,即峰值CMC,如圖8所示。電壓外環(huán)輸出控制量(Vc)和由電感電流上升沿形成的斜坡波形(Vs)通過電壓比較器進(jìn)行比較后,直接得到開關(guān)管的關(guān)斷信號(開通信號由時(shí)鐘自動(dòng)給出),因此,電壓環(huán)的輸出控制量是電感電流的峰值給定量,由電感電流峰值控制占空比。

圖8    峰值電流模式控制示意圖

    峰值CMC控制的是電感電流的峰值,而不是電感電流(經(jīng)濾波后即負(fù)載電流),而峰值電流和平均電流之間存在誤差,因此,峰值CMC性能不如平均CMC。一般滿載時(shí)電感電流在導(dǎo)通期間的電流增量設(shè)計(jì)為額定電流的10%左右,因此,最好情況下峰值電感電流和平均值之間的誤差也有5%,負(fù)載越輕誤差越大,特別是進(jìn)入不連續(xù)電流(DCM)工作區(qū)后誤差將超過100%,系統(tǒng)有時(shí)可能會出現(xiàn)振蕩現(xiàn)象。在剪切頻率fc以下,由圖6可知平均CMC的電流環(huán)開環(huán)增益可升到很高(可以>1000),電流可完全得到控制,但峰值CMC的電流環(huán)開環(huán)增益只能保持在10以內(nèi)不變(峰值電流和平均值之間的誤差引起),因此,峰值CMC更適用于滿載場合。

    峰值CMC的缺點(diǎn)還包括對噪音敏感,需要進(jìn)行斜坡補(bǔ)償解決次諧波振蕩等問題。但由于峰值CMC存在逐周波限流等特有的優(yōu)點(diǎn),且容易通過脈沖電流互感器等簡單辦法復(fù)現(xiàn)電感電流峰值,因此,它在Buck電路中仍然得到了廣泛應(yīng)用。

5    結(jié)語

    采用平均狀態(tài)方程的方法可以得到Buck電路的小信號頻域模型,并可依此進(jìn)行環(huán)路設(shè)計(jì)。電壓模式控制、平均電流模式控制和峰值電流模式控制方法均可用來進(jìn)行環(huán)路設(shè)計(jì),各有其優(yōu)缺點(diǎn),適用的范圍也不盡相同。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動(dòng)現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動(dòng)力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉