當(dāng)前位置:首頁(yè) > 通信技術(shù) > 通信技術(shù)
[導(dǎo)讀] IC智能卡作為信息時(shí)代的新型高技術(shù)存儲(chǔ)產(chǎn)品,具有容量大、保密性強(qiáng)以及攜帶方便等優(yōu)點(diǎn),被廣泛應(yīng)用于社會(huì)生活的各個(gè)領(lǐng)域。通常所說(shuō)的IC卡,是把含有非揮發(fā)存儲(chǔ)單元NVM或集成有微控制器MCU等的IC芯片嵌裝于塑料基片而

 IC智能卡作為信息時(shí)代的新型高技術(shù)存儲(chǔ)產(chǎn)品,具有容量大、保密性強(qiáng)以及攜帶方便等優(yōu)點(diǎn),被廣泛應(yīng)用于社會(huì)生活的各個(gè)領(lǐng)域。通常所說(shuō)的IC卡,是把含有非揮發(fā)存儲(chǔ)單元NVM或集成有微控制器MCU等的IC芯片嵌裝于塑料基片而成,主要包括塑料基片(有或沒(méi)有磁條)、接觸面、IC芯片3個(gè)部分。傳統(tǒng)的IC卡制作工序?yàn)?對(duì)測(cè)試、信息寫入后的硅晶圓片進(jìn)行減薄、劃片,分離成小芯片,再經(jīng)裝片、引線鍵合、包封等工序制成IC卡模塊,最后嵌入IC卡塑料基板。
 
  隨著IC產(chǎn)品制造工藝的提高以及高性能LSI的涌現(xiàn),IC智能卡不斷向功能多樣化、智能化的方向發(fā)展,以滿足人們對(duì)方便、迅捷的追求。然而使用過(guò)程中出現(xiàn)的密碼校驗(yàn)錯(cuò)誤、數(shù)據(jù)丟失、數(shù)據(jù)寫入出錯(cuò)、亂碼、全“0”全“F”等諸多失效問(wèn)題,嚴(yán)重影響了IC卡的廣泛應(yīng)用。因此,有必要結(jié)合IC卡的制作工藝及使用環(huán)境對(duì)失效的IC卡進(jìn)行分析,深入研究其失效模式及失效機(jī)理,探索引起失效的根本原因,以便采取相應(yīng)的措施,改進(jìn)IC卡的質(zhì)量和性能1。
 
  由IC卡失效樣品的分析實(shí)例發(fā)現(xiàn),芯片碎裂、內(nèi)連引線脫落(脫焊、虛焊等)、芯片電路擊穿等現(xiàn)象是引起IC卡失效的主要原因,本文著重對(duì)IC卡芯片碎裂、鍵合失效模式及機(jī)理進(jìn)行研究和討論,并簡(jiǎn)略介紹其他失效模式。
 
  1 芯片碎裂引起的失效 
  由于IC卡使用薄/超薄芯片,芯片碎裂是導(dǎo)致其失效的主要原因,約占失效總數(shù)的一半以上,主要表現(xiàn)為IC卡數(shù)據(jù)寫入錯(cuò)、亂碼、全“0”全“F”。 
  對(duì)不同公司提供的1739張失效IC卡進(jìn)行電學(xué)測(cè)試,選取其中失效模式為全“0”全“F”的100個(gè)樣品進(jìn)行IC卡的正、背面腐蝕開封,光學(xué)顯微鏡(OM)觀察發(fā)現(xiàn)裂紋形狀多為“十”字、“T”字型,亦有部分為貫穿芯片的單條裂紋,并在頂針作用點(diǎn)處略有彎折,如圖1。碎裂芯片中的裂紋50%以上,位于芯片中央附近并垂直于邊緣;其余芯片的裂紋靠近芯片邊緣或集中于芯片。
 

圖1 芯片背面碎裂的OM照片
   下面根據(jù)芯片碎裂物理機(jī)理,結(jié)合IC卡制作工藝(包括硅片的后道工序、模塊條帶制作、IC卡成型工藝),對(duì)導(dǎo)致IC卡薄芯片碎裂的根本原因進(jìn)行深入分析。 

圖2 芯片背面研磨損傷的OM照片
  1.1 硅片減薄 
  標(biāo)準(zhǔn)的硅片背面減薄工藝包括貼片、磨片(粗磨、細(xì)磨)、腐蝕三道工序。常用的機(jī)械磨削法不可避免地會(huì)造成硅片表面和亞表面的損傷(圖2),表面損傷分為3層:有微裂紋分布的非晶層;較深的晶格位錯(cuò)層;彈性變形層。粗磨、細(xì)磨后,硅片背面仍留有深度為15~20μm、存在微損傷及微裂紋的薄層,極大影響了硅片的強(qiáng)度。因此,需要用腐蝕法來(lái)去除硅片背面殘留的晶格損傷層,避免硅片因殘余應(yīng)力而發(fā)生碎裂。實(shí)驗(yàn)發(fā)現(xiàn)原始厚度為725μm的硅片,經(jīng)磨片后,腐蝕深度約為25μm時(shí)可得到最大的強(qiáng)度值3;同時(shí),分析表明,芯片在鍵合與測(cè)試時(shí)發(fā)生碎裂,往往是由于磨片時(shí)造成的損傷在隨后的腐蝕或化學(xué)機(jī)械拋光中沒(méi)有被完全去除而引起的。
   對(duì)于碎裂面垂直于芯片表面,深a、長(zhǎng)2b的二維半橢圓型裂紋而言,則滿足Ccr=[(Φ2KIC2)/(1。2πσIC2)][2],其中Ccr=(acrbcr)1/2,acr為臨界裂紋深度,bcr為臨界裂紋半長(zhǎng);裂紋幾何因子Φ=(1。2π)1/2/Y。設(shè)裂紋長(zhǎng)為2b,深度恒定為1μm,代入斷裂韌度KIC=0。82MPa,Y=1。42得,平面應(yīng)力狀態(tài)常載荷條件下碎裂的臨界強(qiáng)度σ=0。58/4b(GPa),σ與芯片背面殘留裂紋長(zhǎng)度、深度的對(duì)應(yīng)關(guān)系如圖3(b)??梢?jiàn),芯片碎裂臨界強(qiáng)度隨著微裂紋長(zhǎng)度的增大而急劇降低,當(dāng)裂紋大于1μm時(shí),下降趨勢(shì)逐漸平緩,并趨于穩(wěn)定小值。
   磨片過(guò)程不僅會(huì)造成硅片背面的微裂紋,且表面的殘余應(yīng)力還會(huì)引起硅片翹曲。硅片的背面減薄工芯對(duì)芯片碎裂有著直接的影響,因此需要開發(fā)新技術(shù),實(shí)現(xiàn)背面減薄工藝集成,以提高硅片減薄的效率,減少芯片的碎裂。
 
  減薄后的硅片被送進(jìn)劃片機(jī)進(jìn)行劃片,劃片槽的斷面往往比較粗糙,通常存在少量微裂紋和凹坑;有些地方甚至存在劃片未劃到底的情況,取片時(shí)就要靠頂針的頂力作用使芯片“被迫”分離,斷口呈不規(guī)則狀,如圖4為多個(gè)樣品的疊加圖。實(shí)驗(yàn)表明,劃片引起芯片邊緣的損傷同樣會(huì)嚴(yán)重影響芯片的碎裂強(qiáng)度。例如:斷口存在微裂紋或凹槽的芯片,在后續(xù)的引線鍵合工藝的瞬時(shí)沖擊下或者包封后熱處理過(guò)程中由于熱膨脹系數(shù)(CTE)的不匹配產(chǎn)生的應(yīng)力使微裂紋擴(kuò)展而發(fā)生碎裂。
 
  為減少劃片工藝對(duì)芯片的損傷,目前已有新的劃片技術(shù)相繼問(wèn)世:先劃片后減薄(dicingbeforegrinding,DBG)法和減薄劃片法(dicingbythinning,DBT)5,即在硅片背面減薄之前,先用磨削或腐蝕方式在正面切割出切口,實(shí)現(xiàn)減薄后芯片的自動(dòng)分離。這兩種方法可以很好地避免/減少因減薄引起的硅片翹曲以及劃片引起的芯片邊緣損傷。此外,采用非機(jī)械接觸加工的激光劃片技術(shù)也可避免機(jī)械劃片所產(chǎn)生的微裂痕、碎片等現(xiàn)象,大大地提高成品率。 
   1.3 模塊工藝 
  模塊工藝包括裝片、包封等工序)的裝片過(guò)程中,裝片機(jī)頂針從貼片膜上頂起芯片,由真空吸頭吸起芯片,將其粘結(jié)到芯片卡的引線框上。若裝片機(jī)工藝參數(shù)調(diào)整不當(dāng),亦會(huì)造成芯片背面損傷,嚴(yán)重影響芯片強(qiáng)度:如頂針頂力不均或過(guò)大,導(dǎo)致頂針刺穿藍(lán)膜而直接作用于芯片,在芯片背面留有圓型損傷坑;或頂針在芯片背面有一定量的平等滑移過(guò)程,留下較大面積的劃痕,此現(xiàn)象在碎裂芯片中占了相當(dāng)比例。
 
  Fig頂針作用可等效為Vicker壓痕器4壓載過(guò)程,將對(duì)芯片表面造成局部損傷。現(xiàn)將頂針對(duì)芯片背面的觸碰過(guò)程(暫不考慮頂針的滑移)簡(jiǎn)化為球?qū)ΨQ平面垂直加載的理想情況,則兩者接觸圓半徑a隨垂直載荷P的變化為a=34PR(1-v2)/E+(1-v′2)/E′1/3=αP1/3,式中R是頂針端部半徑,E,v和E′,v′分別為芯片、頂針端部的楊氏模量和泊松比。在接觸圓的邊緣,芯片的張應(yīng)力分量達(dá)到極大值σm=12(1-2v)P0,其中P0=P/πα2是端部所受的垂直應(yīng)力,σm為作用在徑向方向并且與材料表面平等的應(yīng)力。由于頂針尖端半徑較小,取硅材料v=0。28,在1N頂力作用下,得到芯片張力分量極大值與接觸半徑的對(duì)應(yīng)關(guān)系如圖5??梢?jiàn),初始情況下,接觸半徑很小,芯片張力分量初始值可達(dá)到GPa量級(jí),與前面計(jì)算結(jié)果比較可知,頂針過(guò)程是芯片碎裂的一個(gè)主要誘因。


此外,伴隨壓痕作用,芯片常發(fā)生破片現(xiàn)象,即在壓痕的周圍有部分材料呈碎屑狀。頂針作用時(shí),在壓痕表面下的形變帶會(huì)有橫向裂紋的產(chǎn)生,壓痕作用消失后,橫向裂紋會(huì)發(fā)生增殖直至樣品表面,導(dǎo)致破片的產(chǎn)生。一般情況下,壓力越大,破片現(xiàn)象越嚴(yán)重。
  
  當(dāng)頂針作用在芯片背面的滑移過(guò)程時(shí),頂針端部受到垂直載荷成比例的摩擦阻力作用,使得接觸圓的張應(yīng)力隨之增高。同時(shí)頂針滑過(guò)芯片,會(huì)在其背面留下條帶狀劃痕,有可能產(chǎn)生細(xì)微碎屑,楔入硅襯底材料形成微裂紋,極大地影響了芯片的強(qiáng)度。
 
  對(duì)開封后的IC卡芯片背面進(jìn)行OM觀察,發(fā)現(xiàn)約大部分碎裂芯片的裂紋處或其附近都存在頂針劃痕,多為直線帶有彎鉤的形狀,且裂紋在劃痕處均有不同程度的彎折。劃痕尺寸較大,一般長(zhǎng)數(shù)十μm,寬大于10μm,且有一定深度,約為幾μm(圖6為20個(gè)樣品劃痕形狀、大小統(tǒng)計(jì)數(shù)據(jù)所得示意圖)。
 在特定接觸半徑下,芯片表面接觸圓外的張應(yīng)力與離接觸中心的徑向距離間滿足σr=σm(a/r)2,隨離接觸中心的徑向距離r的增大σr下降。因此,在離頂針作用點(diǎn)一定范圍內(nèi),芯片表面仍存在張應(yīng)力表面層,為裂紋產(chǎn)生及擴(kuò)展提供了非常有利的條件。


圖6  頂針劃痕示意圖
  IC卡成型工藝中,由于制作工藝因素,模塊厚度、卡基凹槽幾何形狀間存在一定差異,不能完全匹配,從而會(huì)引發(fā)較在成倍應(yīng)力,加上使用過(guò)程中的不同材料的熱脹冷縮或者外力扭曲,也容易引起芯片碎裂。
 
圖7 鍵合引線工藝中的失效機(jī)理
   2 鍵合相關(guān)失效 
  IC卡組裝工藝中,因鍵合引起的失效也是影響IC卡質(zhì)量和可靠性的重要因素之一。鍵合失效主要表現(xiàn)為IC卡電學(xué)特征上的不連續(xù),如開路同時(shí)伴有短路、漏電等現(xiàn)象,或出現(xiàn)“輸入高”或者“輸入低”的失效。圖7給出了與鍵合相關(guān)的諸多失效機(jī)理6。

圖8 鍵合相關(guān)失效
 
  水汽的侵蝕會(huì)引發(fā)電解效應(yīng),很大程度上加速金屬電遷移。焊盤基底諸如C等雜質(zhì)沾污則會(huì)導(dǎo)致空洞的產(chǎn)生,引起焊盤隆起。圖8(c)所示為具有不連續(xù)電學(xué)特征的失效樣品。SEM,EDX(圖9)分析證明連結(jié)部位存在爆裂現(xiàn)象,且焊盤中有氯的存在。 
   3 注塑成型相關(guān)失效 
  與其他塑封IC產(chǎn)品一樣,注塑成型時(shí)的沖絲、包封材料空洞等現(xiàn)象也會(huì)引起IC卡的失效問(wèn)題6。環(huán)氧塑封料在注塑成型時(shí)呈熔融狀態(tài),是有粘度的運(yùn)動(dòng)流體,因此具有一定的沖力,沖力作用在金絲上,使金絲產(chǎn)生偏移,極端情況下金絲被沖斷,這就是所謂的沖絲。
 
  假設(shè)熔融塑封料為理想流體,不考慮塑封體厚度,則塑封料流動(dòng)對(duì)金絲的沖力大小可表示為F=Kfηυsinθ,其中F為單位面積的沖力,Kf為常數(shù),η為熔融塑封料的粘度,υ為流動(dòng)速度,θ為流動(dòng)方向與金絲的夾角。由公式可知,塑封料粘度越大,流速越快,θ角度越大,產(chǎn)生的沖力就越大,沖絲程度也越嚴(yán)重,會(huì)引起短路或者引線連結(jié)處脫落,導(dǎo)致IC卡失效。
   此外,注塑過(guò)程中留下的氣泡、小孔以及麻點(diǎn)(表面多孔)在后續(xù)工藝后會(huì)擴(kuò)散、增大,易造成潮氣以及其他有害雜質(zhì)的侵入,加速IMC的形成,引起焊盤腐蝕。 
  4 靜電放電引起的失效 
  靜電放電(ESD)是直接接觸或靜電場(chǎng)感應(yīng)引起的兩個(gè)不同靜電勢(shì)的物體之間靜電荷的傳輸,常使芯片電路發(fā)生來(lái)流熔化、電荷注入、氧化層損傷和薄膜燒毀等諸多失效。 
 
  防護(hù)ESD的一種有效方法,即設(shè)計(jì)特定的保護(hù)電路。圖10即為一種基于CMOS工藝的IC卡芯片ESD保護(hù)電路7。該結(jié)構(gòu)包括兩個(gè)部分:主保護(hù)電路和箝拉電路。在ESD發(fā)生時(shí),箝拉電路首先導(dǎo)通,使輸入端柵上的電壓箝拉在低于柵擊穿的電壓。中間的串聯(lián)電阻起限流作用,更重要的是使PAD上的電壓能觸發(fā)主保護(hù)電路的開啟,使ESD能量通過(guò)主保護(hù)電路得到釋放。
 
  此外,通過(guò)改善生產(chǎn)工藝、控制使用環(huán)境等也能有效減少ESD的發(fā)生。傳統(tǒng)的IC卡采用引線鍵合條帶技術(shù),芯片碎裂是其最主要的失效機(jī)理。通過(guò)改進(jìn)研磨、劃片等工藝技術(shù),提高組裝(特別是裝片時(shí)的頂針過(guò)程)、鍵合、模塊鑲嵌等工藝質(zhì)量,可大大降低芯片碎裂率,提高IC卡的成品率和可靠性。
 
  此外,與引線鍵合、注模相關(guān)的失效,如虛焊、脫焊、引線過(guò)松、過(guò)緊、沖絲或由于外界潮氣的侵入和電學(xué)因素的共同作用而形成IMC等都將降低IC卡的可靠性,引起IC卡失效,可通過(guò)改進(jìn)相應(yīng)的工藝技術(shù)來(lái)減少此類失效的發(fā)生。ESD亦是IC卡失效的重要機(jī)理之一,嚴(yán)重時(shí)將導(dǎo)致Al線/多晶硅電阻燒穿、晶體管柵氧化層損壞或者結(jié)損傷,對(duì)此可通過(guò)設(shè)計(jì)專門的ESD保護(hù)電路徠提升IC卡芯片抗ESD的能力,以提升IC卡的可靠性。
本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉