當(dāng)前位置:首頁(yè) > 通信技術(shù) > 通信技術(shù)
[導(dǎo)讀]作為應(yīng)用工程師,我們經(jīng)常遇到各種有關(guān)差分輸入型高速模數(shù)轉(zhuǎn)換器(ADC)的驅(qū)動(dòng)問(wèn)題。事實(shí)上,選擇正確的ADC驅(qū)動(dòng)器和配置極具挑戰(zhàn)性。為了使魯棒性ADC電路設(shè)計(jì)多少容易些,我們匯編了一套通用“路障”及解決方

作為應(yīng)用工程師,我們經(jīng)常遇到各種有關(guān)差分輸入型高速模數(shù)轉(zhuǎn)換器(ADC)的驅(qū)動(dòng)問(wèn)題。事實(shí)上,選擇正確的ADC驅(qū)動(dòng)器和配置極具挑戰(zhàn)性。為了使魯棒性ADC電路設(shè)計(jì)多少容易些,我們匯編了一套通用“路障”及解決方案。本文假設(shè)實(shí)際驅(qū)動(dòng)ADC的電路——也被稱為ADC驅(qū)動(dòng)器或差分放大器——能夠處理高速信號(hào)。

引言
大多數(shù)現(xiàn)代高性能ADC使用差分輸入抑制共模噪聲和干擾。由于采用了平衡的信號(hào)處理方式,這種方法能將動(dòng)態(tài)范圍提高2倍,進(jìn)而改善系統(tǒng)總體性能。雖然差分輸入型ADC也能接受單端輸入信號(hào),但只有在輸入差分信號(hào)時(shí)才能獲得最佳ADC性能。ADC驅(qū)動(dòng)器專門(mén)設(shè)計(jì)用于提供這種差分信號(hào)的電路——可以完成許多重要的功能,包括幅度調(diào)整、單端到差分轉(zhuǎn)換、緩沖、共模偏置調(diào)整和濾波等。自從推出AD8138,1以后,差分ADC驅(qū)動(dòng)器已經(jīng)成為數(shù)據(jù)采集系統(tǒng)中不可或缺的信號(hào)調(diào)理元件。

 

圖1:差分放大器。

圖1是一種基本的完全差分電壓反饋型ADC驅(qū)動(dòng)器。這個(gè)圖與傳統(tǒng)運(yùn)放的反饋電路有兩點(diǎn)區(qū)別:差分ADC驅(qū)動(dòng)器有一個(gè)額外的輸出端(VON)和一個(gè)額外的輸入端(VOCM)。當(dāng)驅(qū)動(dòng)器與差分輸入型ADC連接時(shí),這些輸入輸出端可以提供很大的靈活性。

與單端輸出相反,差分ADC驅(qū)動(dòng)器產(chǎn)生平衡的差分輸出信號(hào)——相對(duì)于VOCM——在VOP與VON之間。這里的P指的是正,N指的是負(fù)。VOCM輸入信號(hào)控制輸出共模電壓。只要輸入與輸出信號(hào)處于規(guī)定范圍內(nèi),輸出共模電壓必定等于VOCM輸入端的電壓。負(fù)反饋和高開(kāi)環(huán)增益致使放大器輸入端的電壓VA+和VA-實(shí)質(zhì)上相等。

為了便于后面的討論,需要明確一些定義。如果輸入信號(hào)是平衡信號(hào),那么VIP和VIN相對(duì)于某個(gè)公共參考電壓的幅度應(yīng)該是相等的,相位則相反。當(dāng)輸入信號(hào)是單端信號(hào)時(shí),一個(gè)輸入端是固定電壓,另一個(gè)輸入端的電壓相對(duì)這個(gè)輸入端變化。無(wú)論是哪種情況,輸入信號(hào)都被定義為VIP–VIN。

差模輸入電壓VIN, dm和共模輸入電壓VIN, cm的定義見(jiàn)公式1和公式2。

   
(1, 2)

雖然這個(gè)共模電壓的定義應(yīng)用于平衡輸入時(shí)很直觀,但對(duì)單端輸入同樣有效。輸出也有差模和共模兩種,其定義見(jiàn)公式3和公式4。

對(duì)差分ADC驅(qū)動(dòng)器的分析比對(duì)傳統(tǒng)運(yùn)放的分析要復(fù)雜得多。為了簡(jiǎn)化代數(shù)表達(dá)式,暫且定義兩個(gè)反饋系數(shù)β1和β2,見(jiàn)公式5和公式6。

   
(5, 6)

在大多數(shù)ADC驅(qū)動(dòng)應(yīng)用中β1= β2,但含有VIP、VIN、VOCM、β1和β2項(xiàng)的VOUT, dm通用閉環(huán)公式對(duì)于了解β失配對(duì)性能的影響非常有用。VOUT, dm的計(jì)算見(jiàn)公式7,其中包括了與頻率相關(guān)的放大器有限開(kāi)環(huán)電壓增益A(s)。

   
(7)

當(dāng)β1 ≠β2時(shí),差分輸出電壓取決于VOCM——這不是理想的結(jié)果,因?yàn)樗a(chǎn)生了偏移,并且在差分輸出中有過(guò)大的噪聲。電壓反饋架構(gòu)的增益帶寬積是常數(shù)。有趣的是,增益帶寬積中的增益是兩個(gè)反饋系數(shù)平均值的倒數(shù)。當(dāng)β1 =β2 ≡β時(shí),公式7可以被簡(jiǎn)化為公式8。

   
(8)

這個(gè)表達(dá)式大家可能更加熟悉。當(dāng)A(s) → ∞時(shí),理想的閉環(huán)增益可以簡(jiǎn)化為RF/RG。增益帶寬乘積公式看起來(lái)也很熟悉,其中的“噪聲增益”與傳統(tǒng)運(yùn)放一樣,等于1/β。

反饋系數(shù)匹配的差分ADC驅(qū)動(dòng)器的理想閉環(huán)增益見(jiàn)公式9。

   
(9)

輸出平衡是差分ADC驅(qū)動(dòng)器的一個(gè)重要性能指標(biāo),它分兩個(gè)方面:幅度平衡和相位平衡。幅度平衡用于衡量?jī)蓚€(gè)輸出在幅度方面的接近程度,對(duì)于理想放大器來(lái)說(shuō)它們是完全一致的。輸出相位平衡用于衡量?jī)蓚€(gè)輸出的相位差與180°的接近程度。輸出幅度或相位的任何失衡都會(huì)在輸出信號(hào)中產(chǎn)生有害的共模分量。輸出平衡誤差(公式10)是差分輸入信號(hào)產(chǎn)生的輸出共模電壓與相同輸入信號(hào)產(chǎn)生的輸出差模電壓的對(duì)數(shù)比值,單位是dB。

   
(10)

內(nèi)部共模反饋環(huán)路迫使VOUT, cm等于輸入端VOCM的電壓,從而達(dá)到完美的輸出平衡。

將輸入端接到ADC驅(qū)動(dòng)器
處理高速信號(hào)的系統(tǒng)經(jīng)常會(huì)用到ADC驅(qū)動(dòng)器。分隔距離超過(guò)信號(hào)波長(zhǎng)一小段的器件之間必須用具有受控阻抗的電氣傳輸線連接,以避免破壞信號(hào)完整性。當(dāng)傳輸線的兩端用其特征阻抗端接時(shí)可以取得最佳性能。驅(qū)動(dòng)器一般放在靠近ADC的地方,因此在它們之間不要求使用受控阻抗連接。但到ADC驅(qū)動(dòng)器輸入端的引入信號(hào)連接通常很長(zhǎng),必須采用正確電阻端接的受控阻抗連接。

不管是差分還是單端,ADC驅(qū)動(dòng)器的輸入阻抗必須大于或等于理想的終端電阻值,以便添加的終端電阻RT能與放大器輸入端并聯(lián)達(dá)到要求的電阻值。本文討論的例子中的所有ADC驅(qū)動(dòng)器都設(shè)計(jì)成具有平衡的反饋比,如圖2所示。

 

圖2:差分放大器的輸入阻抗。

因?yàn)閮蓚€(gè)放大器輸入端之間的電壓被負(fù)反饋驅(qū)動(dòng)到零,因此兩個(gè)輸入端處于連接狀態(tài),差分輸入阻抗RIN就簡(jiǎn)單地等于2×RG。為了匹配傳輸線阻抗RL,需要將由公式11計(jì)算得到的電阻RT跨接在差分輸入端。圖3給出了典型的電阻值,其中RF =RG=200Ω,理想的RL, dm=100Ω,RT=133Ω。

   
(11)

 

圖3:匹配100Ω傳輸線。

單端輸入的端接更加麻煩。圖4描述了采用單端輸入和差分輸出的ADC驅(qū)動(dòng)器工作原理。

 

圖4:采用單端輸入的ADC驅(qū)動(dòng)器例子。

雖然輸入是單端的,但VIN, dm等于VIN。因?yàn)殡娮鑂F和RG是相等和平衡的,因此增益是1,而且差分輸出VOP–VON等于輸入,即4Vp-p。VOUT, cm=VOCM=2.5V,而且從下方的反饋電路可以看出,輸入電壓VA+和VA-等于VOP/2。

根據(jù)公式3和公式4,VOP=VOCM+VIN/2,即2.5V±1V的同相擺幅;VON=VOCM–VIN/2,即2.5V±1V的反相擺幅。這樣,VA+和VA-的擺幅等于1.25V±0.5V。必須由VIN提供的電流交流分量等于(2V–0.5V)/500Ω=3mA,因此到地的電阻必須匹配,從VIN看過(guò)去為667Ω。

當(dāng)每個(gè)環(huán)路的反饋系數(shù)都匹配時(shí),公式12就是計(jì)算這個(gè)單端輸入電阻的通式,其中RIN, se是單端輸入電阻。

   
(12)

這是計(jì)算終結(jié)電阻的出發(fā)點(diǎn)。然而值得注意的是,放大器增益公式基于零阻抗輸入源的假設(shè)。由于存在單端輸入造成的不平衡而必須加以匹配的重要源阻抗只會(huì)增加上面RG的阻值。為了保持平衡,必須增加下面RG的阻值來(lái)實(shí)現(xiàn)匹配,但這會(huì)影響增益值。雖然可以為解決端接單端信號(hào)問(wèn)題而采用一個(gè)封閉形式的解決方案,但一般使用迭代的方法。在下面的例子中這種需求將變得很明顯。

在圖5中,為了保持低的噪聲,要求單端到差分增益為1,輸入終結(jié)電阻為50Ω,反饋和增益電阻值在200Ω左右。

根據(jù)公式12可以算出單端輸入電阻為267Ω。公式13表明,并聯(lián)電阻RT應(yīng)等于61.5Ω,才能將267Ω輸入電阻減小至50Ω。

 


圖5:?jiǎn)味溯斎胱杩埂?/span>

   
(13)

圖6是帶源電阻和終端電阻的電路。帶50Ω源電阻的源開(kāi)路電壓為2Vp-p。當(dāng)源用50Ω端接時(shí),輸入電壓減小到1Vp-p,這個(gè)電壓也是單位增益驅(qū)動(dòng)器的差分輸出電壓。

 

圖6:帶源電阻和終端電阻的單端電路。

這個(gè)電路初看起來(lái)非常完整,但不匹配的61.5Ω電阻與50Ω的并聯(lián)并增加到了上面的RG電阻,這就改變了增益和單端輸入電阻,并且造成反饋系數(shù)失配。在低增益情況下,輸入電阻的變化很小,暫時(shí)可以忽略,但反饋系數(shù)仍然必須匹配。解決這個(gè)問(wèn)題的最簡(jiǎn)單方法是增加下面RG的阻值。圖7是一種Thévenin等效電路,其中上方的并聯(lián)組合用作源電阻。

 

圖7:輸入源的Thévenin等效電路。

有了這種替代方案后,就可以將27.6Ω的電阻RTS增加到下面的環(huán)路中實(shí)現(xiàn)環(huán)路反饋系數(shù)的匹配,如圖8所示。

 

圖8:平衡的單端端接電路。

注意,1.1Vp-p的Thévenin電壓要大于1Vp-p的正確端接電壓,而每個(gè)增益電阻增加了27.6Ω,降低了閉環(huán)增益。對(duì)于大電阻(>1kΩ)和低增益(1或2)來(lái)說(shuō)這些相反的效應(yīng)基本抵消,但對(duì)于小電阻或較高增益來(lái)說(shuō)并不能完全抵消。圖8所示電路現(xiàn)在分析起來(lái)就很容易了,其中的差分輸出電壓可以用公式14計(jì)算。

   
(14)

差分輸出電壓并不完全等于理想的1Vp-p ,但可以通過(guò)修改反饋電阻實(shí)現(xiàn)最終獨(dú)立的增益調(diào)整,如公式15所示。

   
(15)

圖9是用標(biāo)準(zhǔn)1%精度電阻實(shí)現(xiàn)的完整電路。

 

圖9:完整的單端端接電路。

觀察: 參考圖9,驅(qū)動(dòng)器的單端輸入電阻RIN, se由于RF和RG的改變而變化。驅(qū)動(dòng)器上端環(huán)路的增益電阻是200Ω,下端環(huán)路的電阻是200Ω+28Ω=228Ω。在不同增益電阻值的情況下計(jì)算RIN, se首先要求計(jì)算兩個(gè)β值,見(jiàn)公式16和公式17。

 
(16)
 
(17)

輸入電阻RIN, se的計(jì)算見(jiàn)公式18。

   
(18)

這個(gè)值與原來(lái)計(jì)算的267Ω稍有不同,但對(duì)RT的計(jì)算沒(méi)有顯著的影響,因?yàn)镽IN, se與RT是并聯(lián)的關(guān)系。

如果需要更精確的總體增益,可以使用更高精度或串聯(lián)的可調(diào)電阻。

上述描述的單次迭代方法非常適合閉環(huán)增益為1或2的場(chǎng)合。增益越高,RTS的值越接近RG值,用公式18計(jì)算的RIN, se值與用公式12計(jì)算的RIN, se值之間的差異就越大。在這些情況下要求采用多次迭代。

多次迭代并不難實(shí)現(xiàn):最近ADI公司發(fā)布的可下載的差分放大器計(jì)算工具, ADIsimDiffAmp™(參考文獻(xiàn)2)和 ADI Diff Amp Calculator™(參考文獻(xiàn)3)足以擔(dān)當(dāng)此任,它們能在幾秒內(nèi)完成上述計(jì)算。

輸入共模電壓范圍
輸入共模電壓范圍(ICMVR)規(guī)定了正常工作狀態(tài)下可以施加于差分放大器輸入端的電壓范圍。在這些輸入端上呈現(xiàn)的電壓可以被稱為ICMV、Vacm或VA±。這個(gè)ICMVR指標(biāo)經(jīng)常被誤解。最常遇到的難題是確定差分放大器輸入端的實(shí)際電壓,特別是相對(duì)于輸入電壓而言。知道變量VIN, cm、β和VOCM的值后,當(dāng)β不相等時(shí)使用通式19、當(dāng)β相等時(shí)使用簡(jiǎn)化公式20就可以計(jì)算出放大器的輸入電壓(VA±)。

   
(19)
   
(20)

記住VA始終是按比例縮小的輸入信號(hào),這一點(diǎn)非常有用(見(jiàn)圖4)。不同的放大器類(lèi)型有不同的輸入共模電壓范圍。ADI公司的高速差分ADC驅(qū)動(dòng)器有兩種輸入級(jí)配置,即中心型和偏移型。中心型ADC驅(qū)動(dòng)器的輸入電壓離每個(gè)電壓軌有約1V的距離(因此叫中心型)。而偏移型輸入級(jí)增加了兩個(gè)晶體管,允許輸入端電壓擺幅更接近–VS軌。圖10是一個(gè)典型差分放大器(Q2和Q3)的簡(jiǎn)化輸入原理圖。

 

圖10:具有偏移型ICMVR的簡(jiǎn)化差分放大器。

偏移型輸入架構(gòu)允許差分放大器處理雙極性輸入信號(hào),即使放大器是采用單電源供電,因此這種架構(gòu)非常適合輸入是地或地電平以下的單電源應(yīng)用。在輸入端增加的PNP晶體管(Q1和Q4)可以將差分對(duì)的輸入電壓向上偏移一個(gè)晶體管的Vbe電壓。例如,當(dāng)-IN端電壓為-0.3V時(shí),A點(diǎn)電壓將為0.7V,允許差分對(duì)正常工作。沒(méi)有PNP(中心型輸入級(jí))時(shí),A點(diǎn)的-0.3V電壓將使NPN差分對(duì)處于反向偏置狀態(tài),因而無(wú)法正常工作。

表1提供了ADI公司ADC驅(qū)動(dòng)器的多數(shù)指標(biāo)一覽表。對(duì)這張表粗略一看就能發(fā)現(xiàn)哪些驅(qū)動(dòng)器具有偏移型ICMVR,哪些沒(méi)有。

 

輸入和輸出耦合:交流或直流
需要交流耦合還是直流耦合對(duì)差分ADC驅(qū)動(dòng)器的選擇有很大的影響。輸入和輸出耦合之間的考慮因素也不同。

交流耦合型輸入級(jí)電路見(jiàn)圖11。

 

圖11:交流耦合型ADC驅(qū)動(dòng)器。

對(duì)于采用交流耦合輸入的差分至差分應(yīng)用來(lái)說(shuō),放大器輸入端呈現(xiàn)的直流共模電壓等于直流輸出共模電壓,因?yàn)橹绷鞣答侂娏鞅惠斎腚娙莞綦x了。另外,直流反饋系數(shù)也是匹配的,完全等于單位1。VOCM——和由此得到的直流輸入共模電壓——經(jīng)常被設(shè)置在電源電壓的一半左右。具有中心型輸入共模范圍的ADC驅(qū)動(dòng)器非常適合這類(lèi)應(yīng)用,它們的輸入共模電壓接近規(guī)定范圍的中心。

交流耦合單端至差分應(yīng)用與對(duì)應(yīng)的差分輸入應(yīng)用非常相似,但在放大器輸入端具有共模紋波——按比例縮小的輸入信號(hào)“復(fù)制品”。具有中心型輸入共模范圍的ADC驅(qū)動(dòng)器將平均輸入共模電壓設(shè)定在規(guī)定范圍的中間,因而能為大多數(shù)應(yīng)用中的紋波提供足夠的富余度。

當(dāng)輸入耦合方式可選時(shí),值得人們注意的是,采用交流耦合輸入的ADC驅(qū)動(dòng)器比采用直流耦合輸入的相似驅(qū)動(dòng)器耗散更少的功率,因?yàn)閮蓚€(gè)反饋環(huán)路中都不存在直流共模電流。

當(dāng)ADC要求輸入共模電壓與驅(qū)動(dòng)器輸出端電壓完全不同時(shí),交流耦合ADC驅(qū)動(dòng)器的輸出就非常有用。當(dāng)VOCM值被設(shè)在電源電壓一半附近時(shí),驅(qū)動(dòng)器將有最大的輸出擺幅,但當(dāng)驅(qū)動(dòng)要求非常低輸入共模電壓的低電壓ADC時(shí)會(huì)出現(xiàn)問(wèn)題。走出這個(gè)困境的簡(jiǎn)單方法(圖12)是驅(qū)動(dòng)器輸出和ADC輸入之間采用交流耦合連接,從驅(qū)動(dòng)器輸出中去除ADC的直流共模電壓,并允許適合ADC的共模電平應(yīng)用于交流耦合側(cè)。例如,驅(qū)動(dòng)器可以工作在單5V電源和VOCM=2.5V條件下,而ADC可以工作在單1.8V電源,此時(shí)在標(biāo)記為ADC CMV的點(diǎn)必需施加0.9V的輸入共模電壓。

 

圖12:采用交流耦合輸出的直流耦合輸入電路。

具有偏移型輸入共模范圍的驅(qū)動(dòng)器一般最適合工作在單電源直流耦合系統(tǒng)中,這是因?yàn)檩敵龉材k妷和ㄟ^(guò)反饋環(huán)路實(shí)現(xiàn)了分壓,而且它的可變分量可以非常接近地,即負(fù)電壓軌。當(dāng)采用單端輸入時(shí),輸入共模電壓由于輸入相關(guān)的紋波而更接近負(fù)電壓軌。

采用雙電源、單端或差分輸入以及交流或直流耦合的系統(tǒng)通常可以采用任一種輸入級(jí)電路,因?yàn)楦挥喽仍黾恿恕?/span>

表2總結(jié)了在輸入耦合和電源的各種組合方式下最常用的ADC驅(qū)動(dòng)器輸入級(jí)電路類(lèi)型。然而,這些選擇未必總是最好的,應(yīng)該對(duì)每個(gè)系統(tǒng)進(jìn)行具體分析。

 

輸出擺幅
為了最大化ADC的動(dòng)態(tài)范圍,應(yīng)該將它驅(qū)動(dòng)到滿輸入范圍。但需要注意:將ADC驅(qū)動(dòng)得太厲害可能有損輸入電路,而驅(qū)動(dòng)不夠的話又會(huì)降低分辨率。將ADC驅(qū)動(dòng)到滿輸入范圍并不意味著放大器輸出幅度必須達(dá)到最大。差分輸出的一個(gè)主要好處是每個(gè)輸出幅度只需達(dá)到傳統(tǒng)單端輸出的一半。驅(qū)動(dòng)器輸出可以遠(yuǎn)離電源軌,從而減少失真。不過(guò)對(duì)單端驅(qū)動(dòng)器來(lái)說(shuō)沒(méi)有這個(gè)好處。當(dāng)驅(qū)動(dòng)器輸出電壓接近電壓軌時(shí),放大器將損失線性度,并引入失真。

對(duì)于對(duì)每一毫伏的輸出電壓都有要求的應(yīng)用來(lái)說(shuō),表1顯示相當(dāng)多的ADC驅(qū)動(dòng)器能夠提供軌到軌輸出,其典型富余量從幾毫伏到幾百毫伏不等,具體取決于負(fù)載。

 

圖13:采用5V電源的ADA4932在各種頻率下的諧波失真與VOCM的關(guān)系。

圖13是ADA4932在各種頻率下的諧波失真與VOCM的關(guān)系圖,是典型輸出擺幅在每個(gè)軌1.2V內(nèi)(富余量)確定的。輸出擺幅是信號(hào)的VOCM與VPEAK之和(1V)。值得注意的是,失真在2.8V以上(3.8 VPEAK或5V往下1.2V)開(kāi)始迅速增加。在低端,失真在2.2V(-1 VPEAK)時(shí)仍很低。同樣的現(xiàn)象還將出現(xiàn)在帶寬和壓擺率的討論中。

噪聲
ADC的非理想特性包括量化噪聲、電子或隨機(jī)噪聲和諧波失真。在大多數(shù)應(yīng)用中重要的一點(diǎn)是,噪聲通常是寬帶系統(tǒng)中最重要的性能指標(biāo)。

所有ADC內(nèi)部都存在量化噪聲,并且取決于位數(shù)n,n越大量化噪聲就越小。因?yàn)榧词?ldquo;理想”轉(zhuǎn)換器也有量化噪聲,因此量化噪聲可以用作比較隨機(jī)噪聲和諧波失真的基準(zhǔn)。ADC驅(qū)動(dòng)器的輸出噪聲應(yīng)該接近或低于ADC的隨機(jī)噪聲和失真。下面先討論ADC噪聲和失真的特征,然后介紹如何衡量ADC驅(qū)動(dòng)器噪聲與ADC性能之間的關(guān)系。

量化噪聲產(chǎn)生的原因是ADC將具有無(wú)限分辨率的模擬信號(hào)量化成有限數(shù)量的離散值。n位ADC有2n個(gè)二進(jìn)制值。兩個(gè)相鄰值之間的差代表了可以分辨的最小差值,這個(gè)差值被稱為量化等級(jí)的最低有效位(LSB),或q。因此一個(gè)量化等級(jí)等于轉(zhuǎn)換器量程的1/2n。如果一個(gè)不斷變化的電壓經(jīng)過(guò)一個(gè)完美的n位ADC轉(zhuǎn)換,然后轉(zhuǎn)換回模擬信號(hào),再?gòu)腁DC輸入中減去這個(gè)信號(hào),那么差值看起來(lái)就像噪聲。它有一個(gè)公式21計(jì)算所得有效值(rms):

   
(21)

從這里可以得出n位ADC在其奈奎斯待帶寬上的信號(hào)與量化噪聲比的對(duì)數(shù)(dB)公式22,這也是n位轉(zhuǎn)換器所能取得的最佳信噪比(SNR)。

ADC中的隨機(jī)噪聲包含了熱噪聲、散粒噪聲和閃爍噪聲,一般要大于量化噪聲。由于ADC的非線性產(chǎn)生的諧波失真會(huì)在輸出信號(hào)中產(chǎn)生與輸入信號(hào)諧波有關(guān)的有害信號(hào)??偟闹C波失真和噪聲(THD+N)是一個(gè)重要的ADC性能參數(shù),它衡量了電子噪聲和諧波失真與接近ADC滿量程輸入范圍的模擬輸入信號(hào)之間的關(guān)系。電子噪聲積分的帶寬包括了所要考慮的最后一個(gè)諧波頻率。THD中的“T”(ttotal,總和)包括了前五個(gè)諧波失真分量,是連同噪聲一起的和的平方根,見(jiàn)公式23。

   
(22)
   
(23)

公式23中的v1是輸入信號(hào),v2到v6是前五個(gè)諧波失真分量,vn是ADC的電子噪聲。(THD+噪聲)的倒數(shù)被稱為信號(hào)與噪聲失真比,簡(jiǎn)稱SINAD,通常用dB表示,見(jiàn)公式24。

   
(24)

如果SINAD被信號(hào)與量化噪聲比代替(公式22),我們就能定義轉(zhuǎn)換器具有的有效位數(shù)(ENOB),前提是這個(gè)轉(zhuǎn)換器的信號(hào)與量化噪聲比與SINAD相同(公式25)。

   
(25)

ENOB也能用SINAD項(xiàng)表達(dá),見(jiàn)公式26。

   
(26)

ENOB可以用來(lái)比較ADC驅(qū)動(dòng)器的噪聲性能和ADC的噪聲性能,進(jìn)而判斷是否適合驅(qū)動(dòng)這個(gè)ADC。圖14是一個(gè)差分ADC噪聲模型。公式27表明了通常情況下當(dāng)β1=β2≡β時(shí),八個(gè)噪聲源中每個(gè)源對(duì)總輸出噪聲密度的貢獻(xiàn)。

 

圖14:差分ADC驅(qū)動(dòng)器的噪聲模型。

公式27表明了通常情況下當(dāng)β1=β2≡β時(shí),八個(gè)噪聲源中每個(gè)源對(duì)總輸出噪聲密度的貢獻(xiàn)。

   
(27)


 


 

總輸出噪聲電壓密度vno, dm是通過(guò)計(jì)算這些分量的和平方根得到的。將這些公式輸入電子表格是計(jì)算總輸出噪聲電壓密度的最好方式。ADI公司網(wǎng)站上還新推出了ADI差分放大器計(jì)算器(參考文獻(xiàn)3),用它能快速計(jì)算噪聲、增益和差分ADC驅(qū)動(dòng)器的其它參數(shù)值。

現(xiàn)在可以將ADC驅(qū)動(dòng)器的噪聲性能與ADC的ENOB作一比較。描述這一過(guò)程的例子是為采用5V電源工作的AD9445 ADC選擇和評(píng)估一款增益為2、2V滿量程輸入的差分驅(qū)動(dòng)器。它能處理用一個(gè)單極點(diǎn)濾波器限制、占用50MHz(-3dB)帶寬的直接耦合寬帶信號(hào)。從數(shù)據(jù)手冊(cè)中記載的各種條件下的ENOB參數(shù)列表中可以發(fā)現(xiàn):對(duì)應(yīng)50MHz的奈奎斯特帶寬,ENOB=12位。

ADA4939 是一款能夠被直接耦合的高性能寬帶差分ADC驅(qū)動(dòng)器。在噪聲性能方面它是驅(qū)動(dòng)AD9445的合適產(chǎn)品嗎?ADA4939數(shù)據(jù)手冊(cè)針對(duì)近似為2的差分增益推薦的RF =402Ω、RG=200Ω,數(shù)據(jù)手冊(cè)給出的這種情況下的總輸出電壓噪聲密度為9.7nV/Hz。首先計(jì)算給定恒定輸入噪聲功率譜密度下的系統(tǒng)噪聲帶寬BN,它是輸出與決定系統(tǒng)帶寬的實(shí)際濾波器相同噪聲功率的等效矩形低通濾波器的帶寬。對(duì)于一個(gè)單極濾波器,BN等于π/2乘以3dB帶寬,如公式28所示。

   
(28)

然后在系統(tǒng)帶寬的平方根內(nèi)對(duì)噪聲密度進(jìn)行積分,得到輸出噪聲有效值(公式29)。

   
(29)

假定噪聲幅度呈高斯分布,那么峰峰值噪聲的計(jì)算可以使用常見(jiàn)的±3σ門(mén)限(在99.7%的時(shí)間內(nèi)噪聲電壓擺幅位于這些門(mén)限之間),見(jiàn)公式30:

   
(30)

現(xiàn)在可以在12位ENOB、2V滿量程輸入范圍基礎(chǔ)上對(duì)驅(qū)動(dòng)器的峰峰輸出噪聲和AD9445 LSB的1 LSB電壓進(jìn)行比較,其中LSB的計(jì)算見(jiàn)公式31。

 
(31)

相對(duì)于12位ENOB,驅(qū)動(dòng)器的峰峰輸出噪聲與ADC的LSB具有可比性。因此從噪聲角度看,ADA4939驅(qū)動(dòng)器非常適合這種應(yīng)用。最終還必須通過(guò)搭建和測(cè)試驅(qū)動(dòng)器/ADC組合作出決定。

電源電壓
考慮電源電壓和電流是縮小ADC驅(qū)動(dòng)器選擇范圍的快速途徑。表1提供了不同電源電壓下ADC驅(qū)動(dòng)器性能的快速查找表。電源電壓會(huì)影響帶寬、信號(hào)擺幅和ICMVR。衡量這些指標(biāo)并進(jìn)行反復(fù)權(quán)衡對(duì)差分放大器的選擇而言至關(guān)重要。

電源抑制(PSR)是另外一個(gè)重要的參數(shù)。作為放大器輸入的電源引腳的作用經(jīng)常被人忽視。電源線上或耦合進(jìn)電源線的任何噪聲對(duì)輸出信號(hào)都有潛在的破壞作用。

考慮ADA4937-1的電源線上存在60MHz、50mVp-p的噪聲這樣一個(gè)例子。它的PSR在50MHz時(shí)是-70dB,這意味著電源線上的噪聲在放大器輸出端將被減少到約16μV。在1V滿量程輸入的16位系統(tǒng)中,1 LSB是15.3μV,因此電源線上的這個(gè)噪聲將“淹沒(méi)”LSB。

這種情況可以通過(guò)增加串聯(lián)表貼鐵氧體磁珠L(zhǎng)1/L2和并聯(lián)旁路電容C1/C2(圖15)加以改進(jìn)。

 

圖15:電源旁路電路。

在50MHz時(shí),磁珠的阻抗是60Ω,10nF(0.01μF)電容的阻抗是0.32Ω,由這兩種元件組成的衰減器可以提供45.5dB的衰減(公式32)。

 
(32)

上述分壓式衰減加上-70dB的PSR總共可提供115dB的抑制效果,因而可將噪聲減小到遠(yuǎn)低于1 LSB的90nVp-p左右。

諧波失真
頻域中的低諧波失真在窄帶和寬帶系統(tǒng)中都很重要。驅(qū)動(dòng)器中的非線性會(huì)在放大器輸出端產(chǎn)生單頻諧波失真和多頻互調(diào)失真。

在噪聲分析例子中使用的方法可以同樣應(yīng)用于失真分析,即對(duì)ADA4939的諧波失真與2V滿量程輸出時(shí)AD9445 12位ENOB的1 LSB進(jìn)行比較。一個(gè)ENOB LSB在噪聲分析中代表488μV。

ADA4939參數(shù)表中的失真數(shù)據(jù)是在增益為2時(shí)給出的值,通過(guò)這張表可以直觀地比較各個(gè)頻率點(diǎn)的二次和三次諧波失真。表3就是增益為2、差分輸出擺幅為2Vp-p時(shí)的諧波失真數(shù)據(jù)。

表3:ADA4939的二次和三次諧波失真。

參數(shù) 諧波失真
HD2 @ 10 MHz –102 dBc
HD2 @ 70 MHz –83 dBc
HD2 @ 70 MHz –83 dBc
HD2 @ 100 MHz –77 dBc
HD3 @ 10 MHz –101 dBc
HD3 @ 70 MHz –97 dBc
HD3 @ 100 MHz –91 dBc

這些數(shù)據(jù)表明,諧波失真隨頻率增加而增加,并且在感興趣帶寬(50MHz)內(nèi)二次諧波失真要比三次諧波失真糟糕。在比感興趣頻率更高的頻率點(diǎn)的諧波失真值較高,因此它們的幅度可能被系統(tǒng)頻帶限制功能所降低。如果系統(tǒng)有一個(gè)50MHz的磚墻式濾波器,那么就只需要考慮超過(guò)25MHz的頻率點(diǎn),因?yàn)楦哳l率的所有諧波將被濾波器濾除。盡管如此,我們還是要評(píng)估頻率最高為50MHz的系統(tǒng),因?yàn)槟壳暗乃袨V波器對(duì)諧波的抑制可能都不夠,失真分量可能混疊回信號(hào)帶寬內(nèi)。圖16給出了ADA4939在各種電源電壓和2Vp-p輸出時(shí)的諧波失真與頻率的關(guān)系。

 

圖16:諧波失真與頻率的關(guān)系。

50MHz時(shí)的二次諧波失真相對(duì)于2Vp-p輸入信號(hào)來(lái)說(shuō)大約是-88dBc。為了比較諧波失真水平和1 ENOB LSB,這個(gè)諧波失真值必須被轉(zhuǎn)換成電壓值,如公式33所示。

   
(33)

這個(gè)失真值只有80μVp-p,或1 ENOB LSB的16%。因此,從失真的角度看,可以認(rèn)為ADA4939是AD9445 ADC驅(qū)動(dòng)器的很好選擇。

由于ADC驅(qū)動(dòng)器是負(fù)反饋放大器,輸出失真取決于放大器電路中的環(huán)路增益值。負(fù)反饋放大器固有的開(kāi)環(huán)失真將被減少1/(1+LG)倍,其中LG代表可用環(huán)路增益。

放大器的輸入(誤差電壓)被乘以一個(gè)大的前向電壓增益A(s),然后通過(guò)反饋系數(shù)β傳送到輸入端,再通過(guò)調(diào)整輸出使誤差最小。這樣,這類(lèi)放大器的環(huán)路增益為A(s)×β。隨著環(huán)路增益(A(s), β或兩者)的降低,諧波失真將增加。電壓反饋放大器,如積分器,被設(shè)計(jì)在直流和低頻率處具有大的A(s),然后隨著1/f在規(guī)定高頻點(diǎn)趨向于1而發(fā)生滾降。隨著A(s)的滾降,環(huán)路增益下降,失真增加。因此諧波失真參數(shù)是A(s)的倒數(shù)。

電流反饋放大器將誤差電流用作反饋信號(hào)。誤差電流被乘以一個(gè)大的前向互阻T(s)而轉(zhuǎn)換成輸出電壓,然后通過(guò)反饋系數(shù)1/RF將輸出電壓轉(zhuǎn)換成反饋電流,以便使輸入誤差電流最小。因此理想的電流反饋放大器的環(huán)路增益是T(s)×(1/ RF)=T(s)/ RF。同A(s)一樣,T(s)也有一個(gè)大的直流值,并隨著頻率的增加而滾降,從而降低環(huán)路增益,增加諧波失真。

環(huán)路增益還直接取決于反饋系數(shù)1/RF。理想電流反饋放大器的環(huán)路增益并不取決于閉環(huán)電壓增益,因此諧波性能不會(huì)隨著閉環(huán)增益的增加而下降。在實(shí)際的電流反饋放大器中,環(huán)路增益確實(shí)某種程度上取決于閉環(huán)增益,但不會(huì)達(dá)到電壓反饋放大器中那樣的程度。 因此對(duì)于高閉環(huán)增益和低失真的應(yīng)用來(lái)說(shuō),電流反饋放大器,比如 ADA4927, 是比電壓反饋放大器更好的選擇。從圖17可以看出隨著閉環(huán)增益的增加失真性能保持得有多好。

 

圖17:失真與頻率和增益的關(guān)系。

帶寬和壓擺率
帶寬和壓擺率在ADC驅(qū)動(dòng)器應(yīng)用中特別重要。一般情況下,器件的帶寬是指小信號(hào)帶寬,而壓擺率衡量的是大信號(hào)擺幅時(shí)放大器輸出端的最大變化率。

EUBW(有效可用帶寬),一個(gè)類(lèi)似于ENOB(有效位數(shù))的首字母縮略詞,用于描述帶寬。許多ADC驅(qū)動(dòng)器和運(yùn)放自稱有很寬的帶寬指標(biāo),但并不是所有帶寬都是可用的。例如,-3dB帶寬是測(cè)量帶寬的一種傳統(tǒng)方法,但它并不意味著所有帶寬是可用的。-3dB帶寬的幅度和相位誤差的使用比實(shí)際“截止”頻率要早十年。那么什么是放大器的EUBW?如何確定它的大?。看_定可用帶寬的一個(gè)極好方法是查詢數(shù)據(jù)手冊(cè)上的失真圖。

圖18表明,為了使二次和三次諧波保持大于-80dBc,這個(gè)ADC驅(qū)動(dòng)器不應(yīng)用于超過(guò)60MHz的頻率。由于每個(gè)應(yīng)用都不盡相同,系統(tǒng)要求將成為具有足夠帶寬和足夠失真性能的合適驅(qū)動(dòng)器的選擇準(zhǔn)則。

 

圖18:ADA4937電流反饋型ADC驅(qū)動(dòng)器的失真曲線。

壓擺率,一種大信號(hào)參數(shù),指的是放大器輸出在沒(méi)有過(guò)高失真的情況下能夠跟蹤輸入的最大變化率。以壓擺率考慮正弦波輸出:

   
(34)

公式34在過(guò)零點(diǎn)的導(dǎo)數(shù)(變化率)即最大變化率,它等于:

   
(35)

其中dv/dt max是壓擺率,Vp是峰值電壓,f等于滿功率帶寬(FPBW)。推算FPBW:

   
(36)

因此,在選擇ADC驅(qū)動(dòng)器時(shí),重點(diǎn)要考慮增益、帶寬和壓擺率(FPBW),以確定放大器是否足夠滿足應(yīng)用要求。

穩(wěn)定性
關(guān)于差分ADC驅(qū)動(dòng)器的穩(wěn)定性考慮與運(yùn)放是一樣的,關(guān)鍵參數(shù)是相位余量。 雖然特定放大器配置的相位余量可以從數(shù)據(jù)手冊(cè)中獲取,但在實(shí)際系統(tǒng)中由于PCB版圖中的寄生效應(yīng)這個(gè)相位余量會(huì)有顯著降低。

負(fù)電壓反饋放大器的穩(wěn)定性取決于其環(huán)路增益的大小和符號(hào),A(s)×β。差分ADC驅(qū)動(dòng)器要比典型的運(yùn)放電路稍微復(fù)雜一點(diǎn),因?yàn)樗袃蓚€(gè)反饋系數(shù)。在公式7和公式8的分母中可以見(jiàn)到環(huán)路增益。公式37提供了在反饋系數(shù)不匹配(β1≠β2)情況下的環(huán)路增益。

   
(37)

當(dāng)反饋系數(shù)不匹配時(shí),有效反饋系數(shù)是兩個(gè)反饋系數(shù)的簡(jiǎn)單平均值。當(dāng)它們匹配并被定義為β時(shí),環(huán)路增益可以簡(jiǎn)化為A(s)×β。要想使反饋放大器穩(wěn)定,其環(huán)路增益不允許等于-1(相當(dāng)于相位偏移-180°、幅度為1)。對(duì)于電壓反饋放大器來(lái)說(shuō),其開(kāi)環(huán)增益頻率圖上環(huán)路增益值等于1(即0dB)的點(diǎn)正是A(s)值等于反饋系數(shù)倒數(shù)的地方。

對(duì)于基本的放大器應(yīng)用,反饋是純阻性的,在反饋環(huán)路中不會(huì)引入相位偏移。在反饋系數(shù)匹配的情況下,與頻率無(wú)關(guān)的反饋系數(shù)倒數(shù)1+RF/RG通常被稱為噪聲增益。如果將以dB為單位的恒定噪聲增益與開(kāi)環(huán)增益A(s)繪制在同一張圖上,那么兩條曲線的交叉點(diǎn)就是環(huán)路增益為1或0dB的地方。在這個(gè)頻率點(diǎn)的A(s)相位與-180°之間的差值被定義為相位余量。為了穩(wěn)定工作,這個(gè)相位余量應(yīng)大于或等于45°。圖19給出了RF/RG=1(噪聲增益=2)時(shí)ADA4932的單位環(huán)路增益點(diǎn)和相位余量。

 

圖19:ADA4932開(kāi)環(huán)增益幅度和相位與頻率的關(guān)系。

進(jìn)一步觀察圖19可以發(fā)現(xiàn),ADA4932在噪聲增益為1(每個(gè)環(huán)路中100%反饋)時(shí)有約50°的相位余量。雖然讓ADC驅(qū)動(dòng)器工作在零增益有點(diǎn)不切實(shí)際,但這一結(jié)果表明,ADA4932可以穩(wěn)定工作在小數(shù)差分增益(如RF/RG=0.25,噪聲增益=1.25)。并不是所有差分ADC驅(qū)動(dòng)器都能這樣。最小穩(wěn)定增益可以在所有ADC驅(qū)動(dòng)器的數(shù)據(jù)手冊(cè)中找到。

電流反饋ADC驅(qū)動(dòng)器的相位增益同樣可以從開(kāi)環(huán)響應(yīng)中判斷。電流反饋放大器不再使用前向增益A(s),而是使用前向互阻T(s),并將誤差電流用作反饋信號(hào)。帶匹配反饋電阻的電流反饋驅(qū)動(dòng)器的環(huán)路增益等于T(s)/ RF,因此電流反饋放大器環(huán)路增益幅度在T(s)= RF時(shí)等于1(即0dB)。這個(gè)點(diǎn)在開(kāi)環(huán)互阻和相位圖上很容易找到,定位方法與電壓反饋放大器相同。注意,繪制電阻與1kΩ的比值能使阻值表示在對(duì)數(shù)圖上。圖20給出了RF=300Ω時(shí)ADA4927電流反饋差分ADC驅(qū)動(dòng)器的單位環(huán)路增益點(diǎn)和相位余量。

 

圖20:ADA4927開(kāi)環(huán)增益幅度和相位與頻率的關(guān)系。

300Ω反饋電阻水平線與互阻幅度曲線的交叉點(diǎn)是環(huán)路增益為0dB的地方。在這個(gè)頻率點(diǎn),T(s)的相位接近-135°,因此有45°的相位余量。相位余量和穩(wěn)定性隨RF的增加而增加,隨RF的減小而減小。電流反饋放大器應(yīng)始終使用具有足夠相位余量的純電阻反饋。

PCB版圖
在穩(wěn)定的ADC驅(qū)動(dòng)器設(shè)計(jì)好后,還必須在PCB上實(shí)現(xiàn)。由于電路板存在寄生成分,總是會(huì)損失一些相位余量,因此電路板的寄生效應(yīng)必須保持最小,其中特別要關(guān)注的是負(fù)載電容、反饋環(huán)路電感和求和節(jié)點(diǎn)電容。每種寄生電抗都會(huì)給反饋環(huán)路增加遲滯性相位偏移,從而減小相位余量。由于PCB版圖設(shè)計(jì)不良可能導(dǎo)致20°以上的相位余量損失。

在使用電壓反饋放大器時(shí)最好使用盡可能小的RF,以便最小化由RF和求和節(jié)點(diǎn)電容組成的極點(diǎn)引起的相位偏移。如果要求使用大的RF,寄生電容可以用跨接每個(gè)反饋電阻的小電容Cf進(jìn)行補(bǔ)償,對(duì)Cf的要求是RFCf等于RG乘以求和節(jié)點(diǎn)電容。

PCB版圖是設(shè)計(jì)中最后的必要步驟之一。遺憾的是,它也是設(shè)計(jì)中最容易被忽視的步驟之一,即使性能高度依賴于版圖設(shè)計(jì)的高速電路也是如此。馬虎或拙劣的版圖設(shè)計(jì)可能降低一個(gè)高性能設(shè)計(jì)的性能,甚至使它不能工作。雖然本文無(wú)法涵蓋正確高速PCB設(shè)計(jì)的所有方面,但還是要介紹一些關(guān)鍵點(diǎn)。

寄生成分將損害高速電路的性能。寄生電容是由元器件的焊盤(pán)、走線、地平面或電源平面引起的。沒(méi)有地平面的長(zhǎng)走線將形成寄生電感,進(jìn)而導(dǎo)致瞬態(tài)響應(yīng)中的振鈴和其它不穩(wěn)定現(xiàn)象。寄生電容在放大器的求和節(jié)點(diǎn)處特別危險(xiǎn),因?yàn)樗鼤?huì)在反饋?lái)憫?yīng)中引入一個(gè)極點(diǎn),造成尖峰和不穩(wěn)定。一種解決方案是確保ADC驅(qū)動(dòng)器安裝和反饋元件焊盤(pán)下方區(qū)域的所有電路板層都是干凈的地和電源平面。

要使有害寄生電抗最小,首先要使所有走線盡可能短。RF-4印制板的外層50Ω走線產(chǎn)生的寄生參數(shù)大約為2.8pF/英寸和7nH/英寸。內(nèi)層50Ω走線的寄生電抗將在此基礎(chǔ)上增加約30%。還要確保在長(zhǎng)走線下方有地平面,以使走線電感最小。保持短小的走線有助于減小寄生電容和寄生電感——并保持設(shè)計(jì)的完整性。

電源旁路是版圖設(shè)計(jì)中另一個(gè)重要的考慮因素。確保電源旁路電容和VOCM旁路電容盡可能靠近放大器引腳放置。另外,在電源上使用多個(gè)旁路電容有助于確保為寬帶噪聲提供低阻抗路徑。圖21給出了一個(gè)帶旁路和輸出低通濾波器的典型差分放大器原理圖。低通濾波器用于限制進(jìn)入ADC的帶寬和噪聲。理想情況下,電源旁路電容回路靠近負(fù)載回路,這有助于減小地平面中的環(huán)流,從而改善ADC驅(qū)動(dòng)器性能(圖22a和圖22b)。

 

圖21:帶電源旁路電路和輸出低通濾波器的ADC驅(qū)動(dòng)器。

使用地平面和一般的接地技巧是一個(gè)具體而復(fù)雜的課題,不在本文討論的范圍之內(nèi)。不過(guò)有幾個(gè)要點(diǎn)需要指出,見(jiàn)圖22a和圖22b。首先,只在一個(gè)點(diǎn)將模擬和數(shù)字地連接在一起,記住只是單點(diǎn)接地。這樣做可以使地平面中模擬和數(shù)字電流的交互作用最小,而這種交互最終將導(dǎo)致系統(tǒng)中產(chǎn)生“噪聲”。另外,要將模擬電源終接到模擬電源平面,數(shù)字電源終接到數(shù)字電源平面。對(duì)于混合信號(hào)IC,要將模擬回路終接到模擬地平面,將數(shù)字地回路終接到數(shù)字地平面。

 

圖22(a):器件側(cè)。(b):電路側(cè)。

 

圖23:混合信號(hào)的接地方式。

 

我們希望當(dāng)您用ADC驅(qū)動(dòng)器進(jìn)行設(shè)計(jì)時(shí)這里提供的材料有助于您更加全面地考慮眾多必要因素。理解差分放大器——并在項(xiàng)目開(kāi)始時(shí)就留意ADC驅(qū)動(dòng)器設(shè)計(jì)的細(xì)節(jié)——將使設(shè)計(jì)過(guò)程中發(fā)生的問(wèn)題最少,并使您遠(yuǎn)離ADC驅(qū)動(dòng)器故障。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車(chē)的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車(chē)技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車(chē)工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車(chē)。 SODA V工具的開(kāi)發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車(chē) 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開(kāi)幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉