當(dāng)前位置:首頁 > 測試測量 > 測試測量
[導(dǎo)讀]應(yīng)用領(lǐng)域:控制與仿真 挑戰(zhàn):采用LabView8.6.1和兩個cRIO軟硬件平臺快速搭建一套永磁同步直線電機硬件在環(huán)實時仿真系統(tǒng)。 應(yīng)用方案:使用NI公司的LabView8.6.1、cRIO9074和cRIO9004軟、硬件平臺成功搭建一套永磁同

應(yīng)用領(lǐng)域:控制與仿真
挑戰(zhàn):采用LabView8.6.1和兩個cRIO軟硬件平臺快速搭建一套永磁同步直線電機硬件在環(huán)實時仿真系統(tǒng)。
應(yīng)用方案:使用NI公司的LabView8.6.1、cRIO9074和cRIO9004軟、硬件平臺成功搭建一套永磁同步直線電機硬件在環(huán)實時仿真平臺。其中cRIO9074和cRIO9004分別用于永磁同步直線電機控制器仿真和永磁同步直線電機模型仿真,兩者采用高速數(shù)、模數(shù)據(jù)采集卡進行數(shù)據(jù)交換,且其核心算法全部在FPGA中完成,具有50us級的高實時性特點。
使用的產(chǎn)品:LabView8.6.1/RT/FPGA;cRIO9074,cRIO9004,9104;兩塊9401;9215,9264,9205各一塊
介紹:
永磁同步直線電機由于其高速度、高精度和高剛度等優(yōu)異性能,目前受到國內(nèi)外廣泛關(guān)注。但與傳統(tǒng)旋轉(zhuǎn)電機相比,直線電機試驗難度大、危險性高,如操作不當(dāng)極易發(fā)生飛車,造成人身和財產(chǎn)損失。因此急需搭建一套永磁同步直線電機的硬件在環(huán)實時仿真平臺。該仿真平臺的快速成功搭建,可以預(yù)先驗證直線電機的控制算法,從而便于提早發(fā)現(xiàn)潛在錯誤,節(jié)約調(diào)試成本、縮短調(diào)試周期和減小事故發(fā)生概率。
正文:
一、 引言
直線電機驅(qū)動的高速直線運動單元取消了從伺服電機到工作臺之間的中間傳動環(huán)節(jié),把運動單元的傳動鏈縮為零,稱為“零傳動”。該傳動方式既可簡化結(jié)構(gòu),又可提高直線運動單元的速度、加速度、靈敏度、剛度和精度。在高速直線運動單元中,由直線電機直接驅(qū)動代替?zhèn)鹘y(tǒng)旋轉(zhuǎn)電機加滾珠絲杠副驅(qū)動方式已是大勢所趨,目前直線電機已經(jīng)被廣泛應(yīng)用于工業(yè)、民用、軍事及其它各種直線運動的場合。國外著名的機床公司,如Siemems,F(xiàn)anuc等在其高端數(shù)控機床中無例外地全部使用直線驅(qū)動方式,使得加工出產(chǎn)品的精度和加工速度都得到極大提高。永磁同步直線電機由于無需電勵磁、推力密度大和效率高等優(yōu)點事實上已成為今后直線電機的發(fā)展方向。
與傳統(tǒng)旋轉(zhuǎn)電機相比,直線電機由于磁路是開放的,負(fù)載與直線電機之間無機械傳動裝置緩沖,所有擾動都直接加載到電機端,加上直線電機特有的端部效應(yīng),一方面給直線電機的控制帶來極大的挑戰(zhàn),另一方面在調(diào)試與操作過程中稍有不慎極易出現(xiàn)飛車的危險性,造成人身和財產(chǎn)損失。因此本文采用LabView8.6.1和cRIO9074和cRIO9004軟硬件平臺,搭建了一套永磁同步直線電機的硬件在環(huán)實時仿真平臺。該平臺運用矢量控制算法,實現(xiàn)位置環(huán)、速度環(huán)和電流環(huán)三環(huán)或速度環(huán)、電流環(huán)二環(huán)閉環(huán)控制。該平臺能夠模擬永磁同步直線電機的多種運動工況,快速、無差地跟蹤速度和位置給定信號,仿真結(jié)果與科爾摩根系統(tǒng)類似,驗證了算法的正確性。
二、 永磁同步直線電機數(shù)學(xué)模型
永磁同步直線電機的dq軸方程:
 
式(1)、(2)中ud,uq,id,iq,Ld,Lq 分別表示直線電機直、交軸電壓、直、交軸電流和直、交軸電感,R為定子電阻, 為直線電機永磁體磁鏈,V為直線電機的移動速度, 為節(jié)距,P為極對數(shù)。
永磁同步直線電機的推力方程為:
                        (3)
式中,F(xiàn)e為直線電機的電磁推力。
永磁同步直線電機的運動學(xué)方程為:

式(4)中,F(xiàn)d為直線電機的阻力(含磁阻力和負(fù)載產(chǎn)生的阻力),Bv為粘滯摩擦系數(shù),m為直線電機(含負(fù)載)質(zhì)量。式(5)中,x為直線電機移動位移。
三、 永磁同步直線電機矢量控制原理
交流電機的矢量控制是1971年由德國F.Blaschk等人提出的。其基本思想是在交流電機上模擬直流電機的轉(zhuǎn)矩控制規(guī)律。在磁場定向坐標(biāo)上,將電流矢量分解為產(chǎn)生磁通的勵磁電流和產(chǎn)生轉(zhuǎn)矩的轉(zhuǎn)矩電流,使兩個電流分量相互垂直、彼此獨立,因此可以分別加以控制。在永磁同步電機矢量控制系統(tǒng)中,轉(zhuǎn)子磁極的位置用來決定逆變器的觸發(fā)信號,以保證逆變器輸出頻率始終等于轉(zhuǎn)子角頻率,因此,永磁同步電機的矢量控制為自控運行的矢量控制。
在矢量控制中定子電流的控制模式是多種多樣的,且電流控制模式和轉(zhuǎn)子的幾何結(jié)構(gòu)影響著永磁同步電機的性能和變換器的容量。本文采用常見的直軸電流id=0模式,該控制方式突出的優(yōu)點是沒有電機直軸電樞反應(yīng),不會引起永磁體的去磁現(xiàn)象,且可以同時實現(xiàn)直線電機每安培最大推力控制,只要控制好定子電流的幅值和相位,就可以得到滿意的推力控制特性。本文所提出的矢量控制原理框圖如圖1所示。
 
圖1 矢量控制原理框圖

四、 永磁同步直線電機硬件在環(huán)實時仿真平臺
借助National Instruments公司的LabVIEW 8.6.1、cRIO9074、cRIO9004和9401、9215、9264、9205高速數(shù)、模采集卡軟、硬件平臺,在較短的時間內(nèi)搭建了一套永磁同步直線電機硬件在環(huán)實時仿真平臺。該平臺運用矢量控制算法,根據(jù)需要可以實現(xiàn)位置環(huán)、速度環(huán)和電流環(huán)三環(huán)或速度環(huán)和電流環(huán)二環(huán)閉環(huán)控制,電流最高采樣頻率達到20kS/s(周期50us),高于科爾摩根直線電機驅(qū)動器電流采樣率16kS/s(周期62.5us)。系統(tǒng)的位置和速度輸出可以快速無差地跟蹤給定的位置和速度信號,精度達到幾個微米級別,可以在線調(diào)節(jié)控制器參數(shù)和直線電機負(fù)載,仿真結(jié)果與實際科爾摩根系統(tǒng)類似。該平臺的主要功能模塊有:參數(shù)設(shè)置模塊、直線電機模型仿真模塊、直線電機控制器仿真模塊、圖形顯示模塊和數(shù)據(jù)記錄與分析模塊。該平臺的示意圖如圖2所示:
 
圖2 永磁同步直線電機硬件在環(huán)實時仿真平臺示意圖
參數(shù)設(shè)置模塊: 用來設(shè)置直線電機參數(shù)、負(fù)載系數(shù)、粘滋磨擦系數(shù)、直流母線電壓、采樣頻率、初始控制器參數(shù)、三角載波頻率與幅值、PWM模塊中的死區(qū)時間等。其中直線電機參數(shù)、負(fù)載系數(shù)、粘滋磨擦系數(shù)、直流母線電壓用于直線電機模型仿真模塊(采樣頻率100kS/s);初始控制器參數(shù)、三角載波頻率與幅值、PWM模塊中的死區(qū)時間用于直線電機控制器仿真模塊(采樣頻率20kS/s)。這部分子程序是在cRIO9074、cRIO9004的RT控制器中開發(fā)成功。
直線電機模型仿真模塊:采用直線電機數(shù)學(xué)模型和運動方程來模擬實際直線電機的運行狀態(tài),把得到的直線電機各項運行數(shù)據(jù)送到直線電機控制器仿真模塊。根據(jù)參數(shù)設(shè)置模塊獲得的直線電機參數(shù),進行歸一化處理,得到直線電機歸一化參數(shù)。采集由直線電機控制器仿真模塊發(fā)來的6路PWM信號(采用高速數(shù)字采集卡9401),結(jié)合直流母線電壓和當(dāng)前直線電機相電流正、負(fù)方向信號,計算出直線電機三相相電壓,進行Clarke-Park變換,得到dq軸電壓。然后根據(jù)歸一化的直線電機dq軸方程計算出下一步直線電機dq軸電流、三相相電流、電磁推力。根據(jù)直線電機運動方程計算直線電機的加速度、速度、位移、電角度等信號,通過高速模擬輸出卡9264,把上面計算出的兩路相電流、速度、位移、電角度共5路信號送到直線電機控制器仿真模塊。這部分子程序是在cRIO9004(內(nèi)插9401和9264)的FPGA中開發(fā)成功。該模塊的子程序框圖如圖3所示。
 
圖3 永磁同步直線電機模型仿真子程序框圖

直線電機控制器仿真模塊:該模塊包含位置環(huán)、速度環(huán)、電流環(huán)三環(huán)和速度環(huán)、電流環(huán)二環(huán)閉環(huán)控制兩個子程序,實現(xiàn)對模擬的直線電機進行速度或位置的閉環(huán)控制功能。以位置環(huán)閉環(huán)控制為例,來說明該模塊的主要功能。采用9215和9205模擬采集卡采集到直線電機模型仿真模塊發(fā)來的直線電機位置、電角速度、兩路直線電機相電流和速度信號。根據(jù)位置給定信號和采集到的位置反饋信號,求出偏差值送入位置環(huán)PI調(diào)節(jié)器,其輸出作為速度給定信號。以此類推,經(jīng)過速度環(huán)PI調(diào)節(jié)器、電流環(huán)PI調(diào)節(jié)器(含d、q軸)得到d、q軸給定電壓信號,通過Clarke-Park逆變換,得到三相相電壓調(diào)制信號。這些信號與三角載波信號進行比較,得到包括正、反6路PWM信號(算法考慮了死區(qū)效應(yīng),防止逆變器上、下橋臂短路),通過9401高速數(shù)據(jù)采集卡輸出到直線電機模型仿真模塊,至此整個直線電機位置閉環(huán)控制得以實現(xiàn)。這部分子程序是在cRIO9074(內(nèi)插9401、9205和9215)的FPGA中開發(fā)成功。位置環(huán)子程序程序框圖和前面板圖分別如圖4、5所示。
 

圖形顯示模塊:實時動態(tài)顯示直線電機的位移、速度、三相相電流、位置角度、PWM波形曲線。通過FIFO實現(xiàn)直線電機模型仿真模塊和直線電機控制器仿真模塊的FPGA與RT控制器進行數(shù)據(jù)實時交換。這部分子程序是在cRIO9074、cRIO9004的RT控制器中開發(fā)成功。
數(shù)據(jù)記錄與分析模塊:存取直線電機的位移、速度、三相相電流、位置角度、PWM波形等數(shù)據(jù),分析直線電機電流、電壓諧波分布等,為進一步優(yōu)化算法提供數(shù)據(jù)。這部分子程序同樣是在cRIO9074、cRIO9004的RT控制器中開發(fā)成功。
三、仿真實例
3.1 平臺的軟、硬件組成
永磁同步直線電機硬件在環(huán)實時仿真平臺軟、硬件組成如下:
軟件平臺:LabVIEW8.6.1/RT/FPGA
硬件平臺:
 cRIO9074、9401、9205和9215組成控制器仿真硬件平臺;
 cRIO9004、9104、9401和9264組成仿真器仿真硬件平臺
 一臺PC計算機;
 室內(nèi)網(wǎng)絡(luò)。
圖6給出了永磁同步直線電機的硬件在環(huán)實時仿真與試驗平臺實物圖。
 
圖6 永磁同步直線電機硬件在環(huán)實時仿真與試驗平臺實物圖

3.2 永磁同步直線電機參數(shù)
永磁同步直線電機參數(shù)見表1。
表1 永磁同步直線電機參數(shù)

3.3 仿真分析
圖7給出了兩種不同的速度環(huán)運行方式,自動方式和手動方式,前者速度給定在 0.25m/s周期跳變,后者保持速度給定值0.25m/s不變。從圖7中不難發(fā)現(xiàn)通過調(diào)節(jié)速度環(huán)、電流環(huán)控制器參數(shù)為一組合適參數(shù),如表2所示,仿真的直線電機運行速度能夠在10ms左右時間內(nèi)快速跟蹤速度給定,且穩(wěn)態(tài)誤差在 2um/s內(nèi)。
表2.速度和電流環(huán)控制器參數(shù)
 速度環(huán) d軸電流環(huán) q軸電流環(huán)
KP 1.105 16 6
KI 11.397 5 6

A)自動運行方式                         B)手動運行方式


圖7永磁同步直線電機速度環(huán)控制子程序前面板圖
圖8給出了直線電機仿真器中的PWM波形圖。圖中可以明顯看出三對正、反相PWM波形的上下沿之間有死區(qū)延時,這樣可以避免逆變器上下橋臂中的IGBT同時導(dǎo)通,造成逆變器輸出電源正、負(fù)極短路危險。

 
圖9 位置給定值、位置跟蹤值和速度穩(wěn)態(tài)值
從圖9可以得出,在0.25~3.25m較大范圍內(nèi)的位置給定值,系統(tǒng)的位置跟蹤誤差保持在-1.5~1um之間,且速度穩(wěn)態(tài)值在-0.005~0.007um/s范圍內(nèi)波動,系統(tǒng)達到較為理想的伺服運行狀態(tài)。本文的直線電機參數(shù)均取自于實際直線電機參數(shù),運行結(jié)果與科爾摩根系統(tǒng)較為一致,從而驗證了本文所提算法的正確性。

四、結(jié)論
利用NI公司的虛擬儀器LabVIEW 8.6.1/RT/FPGA、cRIO9074與cRIO9004/9104軟硬件平臺,在較短的時間內(nèi)搭建了一套永磁同步直線電機硬件在環(huán)實時仿真平臺,比采用其它傳統(tǒng)軟件開發(fā)平臺縮短了至少1倍以上的開發(fā)時間。該平臺的成功開發(fā),使得在硬件在環(huán)條件下可以事先測試永磁同步直線電機的控制器算法,因而在實際驅(qū)動器開發(fā)過程中,必將節(jié)約成本和縮短研發(fā)時間,同時降低事故發(fā)生的概率。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉