基于小波神經(jīng)網(wǎng)絡(luò)的掌紋識(shí)別方法的研究
掃描二維碼
隨時(shí)隨地手機(jī)看文章
摘要:為提高掌紋圖像識(shí)別率,首先利用手掌的幾何輪廓對(duì)所采集到的掌紋圖像進(jìn)行預(yù)處理,進(jìn)行分割得到感興趣的區(qū)域。再利用小波變換對(duì)掌紋圖像分別進(jìn)行多層分解,進(jìn)而提取小波特征。最后利用BP神經(jīng)網(wǎng)絡(luò)進(jìn)行分類。通過(guò)仿真實(shí)驗(yàn)表明,與單一的神經(jīng)網(wǎng)絡(luò)方法進(jìn)行掌紋識(shí)別相比,這種將小波分析與神經(jīng)網(wǎng)絡(luò)相結(jié)合的方法收斂步數(shù)少、用時(shí)短、具有較高的識(shí)別率。
關(guān)鍵詞:掌紋識(shí)別;BP網(wǎng)絡(luò);小波分析
0 引言
近年來(lái),掌紋識(shí)別作為一種新興的生物識(shí)別技術(shù),越來(lái)越受到人們的重視。與常見的指紋、虹膜、人臉等生物特征識(shí)別技術(shù)相比,掌紋有許多獨(dú)特的優(yōu)勢(shì),包括識(shí)別率高、普適性強(qiáng)、采集設(shè)備價(jià)格低廉、用戶可接受性好等,作為生物識(shí)別領(lǐng)域的新興生物特征,已經(jīng)得到國(guó)內(nèi)外許多研究者的重視。
小波變換是將信號(hào)或圖像分層,按小波基展開,根據(jù)圖像信號(hào)的性質(zhì)和事先給定的處理要求確定展開到哪一級(jí)為止,可以控制計(jì)算量,滿足實(shí)時(shí)處理的需求。圖像經(jīng)過(guò)小波變換,其低頻部分保留了絕大部分信息和能量。同時(shí),在圖像的敏感位置(如輪廓線、突出點(diǎn)等),小波變換后生成的特征矢量的模會(huì)相對(duì)較大,這些優(yōu)點(diǎn)有利于掌紋的識(shí)別。人工神經(jīng)網(wǎng)絡(luò)是人們模仿人的大腦神經(jīng)系統(tǒng)信息處理功能的一個(gè)智能化系統(tǒng),目前廣泛地應(yīng)用于模式識(shí)別、復(fù)雜控制等領(lǐng)域。反向傳播網(wǎng)絡(luò)(Back-Propagation Network,簡(jiǎn)稱BP網(wǎng)絡(luò))是將誤差信息反向傳播,對(duì)非線性可微分函數(shù)進(jìn)行權(quán)值訓(xùn)練的多層前饋型神經(jīng)網(wǎng)絡(luò),其結(jié)構(gòu)簡(jiǎn)單、可塑性強(qiáng),被廣泛用于掌紋識(shí)別中,并收到良好的效果。
本文提取了一種基于小波變換和神經(jīng)網(wǎng)絡(luò)相結(jié)合的掌紋識(shí)別方法,首先采用小波變換對(duì)掌紋圖像進(jìn)行特征提取,再利用BP網(wǎng)絡(luò)對(duì)掌紋圖像進(jìn)行分類和識(shí)別,得到較高的識(shí)別率。
1 圖像預(yù)處理
由于不同時(shí)間不同手掌存在不同程度的旋轉(zhuǎn)和偏移,因此首先要對(duì)通過(guò)采集設(shè)備得到的掌紋圖像進(jìn)行預(yù)處理,以便于以后的特征提取。采集到的圖像包含很多內(nèi)容,但我們感興趣的只是掌紋所在的位置。因此在首先對(duì)掌紋圖像進(jìn)行感興趣區(qū)域(ROI)的提取,包括邊緣檢測(cè)點(diǎn)、定位基準(zhǔn)點(diǎn)、建立坐標(biāo)點(diǎn),最后分割出含有豐富信息的ROI區(qū)域。主要步驟如下:
(1)選擇適當(dāng)閾值對(duì)圖像進(jìn)行二值化處理,如圖1 2)所示;
(2)對(duì)二值圖像進(jìn)行邊緣檢測(cè),得到掌紋輪廓,如圖1 3)所示;
(3)跟蹤掌紋邊緣得到基準(zhǔn)點(diǎn)K1和K2,將過(guò)K1、K2的直線作為X軸,將直線K1、K2的中垂線作為軸建立坐標(biāo)系,如圖1 4)所示;
(4)在所建立的坐標(biāo)系中,分割出的掌紋中心區(qū)域作為ROI,如圖1 5)所示。
2 掌紋特征提取
2.1 小波分析
小波分析方法是一種窗口大小固定但其形狀可改變,時(shí)間窗和頻率窗都可改變的時(shí)頻局部化分析方法。即在低頻部分有較高的頻率分辨率和較低的時(shí)間分辨率,在高頻部分具有較高的時(shí)間分辨率和較低的頻率分辨率,對(duì)信號(hào)有自適應(yīng)特性。
離散小波變換定義:將連續(xù)小波變換的尺度a和時(shí)間位移b進(jìn)行離散化,就得到離散小波變換。通常a的離散化按照2的冪級(jí)數(shù)進(jìn)行,即:a=2-j(j=0,1,2…)。
2.2 掌紋特征的提取
本文利用二維離散小波變換函數(shù)dwt2對(duì)圖像進(jìn)行小波分解后,再用upcoef2函數(shù)對(duì)分解后的圖像重構(gòu),最后用wcodemat函數(shù)進(jìn)行量化編碼。從而達(dá)到了去掉圖像的高頻部分而僅保留低頻部分的效果。圖2為經(jīng)過(guò)小波處理的掌紋圖像。其中,圖2(a)為經(jīng)過(guò)預(yù)處理之后的掌紋圖像;圖2(b)為小波分解之后的圖像;圖2(c)為經(jīng)過(guò)第一次壓縮之后的掌紋圖像;圖2(d)為經(jīng)過(guò)第二次壓縮的掌紋圖像。由圖可以看出,經(jīng)小波分解后把圖像分解成低頻L1和高頻H1兩部分后,在下一層的分解中,又將上一層的低頻L1繼續(xù)分解成低頻L2和高頻H2兩部分。壓縮后的圖像去掉了將近一半的系數(shù)。將二次小波分解后的低頻向量作為人臉識(shí)別的特征矢量,可以降低神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)處理量,縮短神經(jīng)網(wǎng)絡(luò)的訓(xùn)練時(shí)間。
3 神經(jīng)網(wǎng)絡(luò)
反向傳播(Error Back Propagation-BP)算法是多層感知器的一種有效學(xué)習(xí)算法,它把一組負(fù)荷樣本的輸入輸出問題變成一個(gè)非線性優(yōu)化問題,使用了最優(yōu)化中最普遍的梯度下降算法,用迭代運(yùn)算求解權(quán)值相應(yīng)于學(xué)習(xí)記憶問題,加入了隱節(jié)點(diǎn)使得優(yōu)化問題的可調(diào)整參數(shù)增加,從而可以得到預(yù)測(cè)負(fù)荷的精確解。
BPNN是一種有一個(gè)輸入層、一個(gè)輸出層、一個(gè)或多個(gè)隱含層的常用的前饋網(wǎng)絡(luò),它每一層上包含了若干個(gè)節(jié)點(diǎn),每個(gè)節(jié)點(diǎn)代表一個(gè)神經(jīng)元。同一層上的各節(jié)點(diǎn)之間無(wú)耦合連接關(guān)系,信息從輸入層開始在各層之間單向傳播,依次經(jīng)過(guò)各隱含層節(jié)點(diǎn),最后達(dá)到輸出層節(jié)點(diǎn)。其結(jié)構(gòu)如圖3所示。
3.1 輸入層的設(shè)計(jì)
在圖像經(jīng)過(guò)二維小波處理后,每一幅圖像就可以用一個(gè)向量來(lái)表示,提取每一幅圖像的低頻部分作為神經(jīng)網(wǎng)絡(luò)的輸入。這樣可以減少神經(jīng)網(wǎng)絡(luò)的輸入維數(shù),降低神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)處理量。
3.2 隱層的選擇
隱層的神經(jīng)元數(shù)目與問題的要求、輸入/輸出單元的數(shù)目都有直接關(guān)系,數(shù)目太多會(huì)導(dǎo)致學(xué)習(xí)時(shí)間太長(zhǎng)、誤差不一定最佳,也會(huì)導(dǎo)致容錯(cuò)性差、不能識(shí)別以前沒有看到的樣本,因此一定存在一個(gè)最佳的隱單元數(shù)。參照以往實(shí)驗(yàn),本次采用了公式n1=n+m+a(m為輸出神經(jīng)元數(shù),n為輸入單元數(shù),a為[1,10]之間的常數(shù))來(lái)確定隱層的神經(jīng)元數(shù)目,取得了較好的效果。
3.3 輸出層的設(shè)計(jì)
輸出層的維數(shù)可根據(jù)使用者的要求確定。如果將BP網(wǎng)絡(luò)用做分類器,類別模式一共有m個(gè),那么輸出層神經(jīng)元個(gè)數(shù)為m或log2m。在實(shí)驗(yàn)時(shí)采用了20個(gè)人的掌紋圖像,因此類別總共有20個(gè),即m=20,所以應(yīng)取輸出層神經(jīng)元個(gè)數(shù)為20或log220,本次選取的輸出層神經(jīng)元個(gè)數(shù)為20。
4 實(shí)驗(yàn)結(jié)果和分析
本文實(shí)驗(yàn)是借助香港理工大學(xué)的Poly-U掌紋圖像庫(kù)進(jìn)行的。Poly-U掌紋圖像庫(kù)中包含40人的掌紋圖像,每人10幅圖像,共400幅,每幅原始圖像256個(gè)灰度級(jí),分辨率為129×129。本次試驗(yàn)隨機(jī)挑選20人,每人10幅的圖像中,選擇5幅用來(lái)作為樣本數(shù)據(jù)進(jìn)行訓(xùn)練,另外5幅作為測(cè)試樣本用來(lái)進(jìn)行檢驗(yàn)。掌紋圖像首先經(jīng)過(guò)圖像預(yù)處理,再經(jīng)過(guò)小波變換來(lái)4為未經(jīng)過(guò)小波變換處理的神經(jīng)網(wǎng)絡(luò)訓(xùn)練圖,圖5為經(jīng)過(guò)小波變換處理的神經(jīng)網(wǎng)絡(luò)訓(xùn)練圖。圖6為兩種方法下的不同掌紋檢測(cè)樣本的識(shí)別效果圖。
由圖4和圖5的實(shí)驗(yàn)結(jié)果可知,未經(jīng)過(guò)小波變換處理的圖像直接送到神經(jīng)網(wǎng)絡(luò),其網(wǎng)絡(luò)訓(xùn)練步數(shù)為500,經(jīng)過(guò)小波變換處理后的圖像送到神經(jīng)網(wǎng)絡(luò),其訓(xùn)練步數(shù)為210,發(fā)現(xiàn)收斂步數(shù)明顯降低;收斂用時(shí)明顯減少;識(shí)別率明顯提高。同時(shí)由圖6可知,這種將小波變換與BP神經(jīng)網(wǎng)絡(luò)相結(jié)合進(jìn)行掌紋識(shí)別方法不僅可以大大縮短神經(jīng)網(wǎng)絡(luò)的訓(xùn)練時(shí)間,同時(shí)也能提高人臉圖像的識(shí)別率。
5 結(jié)束語(yǔ)
針對(duì)以往直接采用BP神經(jīng)網(wǎng)絡(luò)對(duì)掌紋進(jìn)行識(shí)別時(shí)收斂速度慢、識(shí)別率不高等問題,本文采用小波變換與BP神經(jīng)網(wǎng)絡(luò)相結(jié)合的方法來(lái)對(duì)掌紋進(jìn)行識(shí)別。通過(guò)實(shí)驗(yàn)證明,這種方法與單一的BP神經(jīng)網(wǎng)絡(luò)的方法相比較,具有訓(xùn)練時(shí)間短、識(shí)別率高等優(yōu)點(diǎn)。如何克服BP神經(jīng)網(wǎng)絡(luò)容易陷于局部極小值問題將是今后研究的一個(gè)方向。