C-RAN組網(wǎng)時(shí)的CPRI時(shí)延抖動(dòng)測試方法
掃描二維碼
隨時(shí)隨地手機(jī)看文章
集中基帶池和分布式射頻拉遠(yuǎn)技術(shù)是4G LTE無線接入網(wǎng)組網(wǎng)的發(fā)展趨勢。為了節(jié)省光纖資源,會(huì)把基帶池和多個(gè)射頻拉遠(yuǎn)模塊間的CPRI鏈路復(fù)用在一根光纖上進(jìn)行傳輸,由此增加的時(shí)延抖動(dòng)是否會(huì)影響系統(tǒng)可靠性是設(shè)計(jì)組網(wǎng)方案時(shí)要重點(diǎn)考慮的因素。本文介紹了一種利用是德公司(原安捷倫公司電子測量儀器部)的高帶寬實(shí)時(shí)示波器進(jìn)行C-RAN組網(wǎng)時(shí)的CPRI時(shí)延抖動(dòng)測試的方法,并根據(jù)實(shí)際測試結(jié)果對彩光直驅(qū)和OTN承載兩種方式的時(shí)延抖動(dòng)進(jìn)行了分析。
一、前言
4G移動(dòng)通信技術(shù)已經(jīng)進(jìn)入商用階段,運(yùn)營商需要在有限的頻譜資源下提供更高的容量和數(shù)據(jù)傳輸速率。LTE中高帶寬及高階調(diào)制技術(shù)的引入,使得對于信噪比要求更高,因此單個(gè)LTE基站的覆蓋范圍會(huì)比采用3G技術(shù)時(shí)要小。密集組網(wǎng)和基站間協(xié)作的要求帶來了基站站點(diǎn)數(shù)量擴(kuò)容的巨大需求,相應(yīng)地帶來了選址、功耗、海量光纖資源的巨大挑戰(zhàn)。因此,合適的組網(wǎng)和傳輸方案是推進(jìn)4G應(yīng)用普及的關(guān)鍵技術(shù)。
為此,各大運(yùn)營商都在進(jìn)行新的無線接入網(wǎng)組網(wǎng)方式的研究。比如中國移動(dòng)的C-RAN是基于集中化處理(Centralized Processing)、協(xié)作式無線電(Collaborative Radio)、實(shí)時(shí)云計(jì)算構(gòu)架(Real-time Cloud Infrastructure)的綠色無線接入網(wǎng)構(gòu)架(Clean system)。其本質(zhì)是通過將基帶單元BBU集中放置以減小站址數(shù)量,并把室外的遠(yuǎn)端射頻單元RRU通過合適的傳輸方案拉遠(yuǎn)到需要覆蓋的區(qū)域。這種組網(wǎng)方式大大減少了機(jī)房的數(shù)量,從而減少了建設(shè)、運(yùn)維費(fèi)用,同時(shí)可以采用協(xié)作化、虛擬化技術(shù),實(shí)現(xiàn)資源共享和動(dòng)態(tài)調(diào)度,提高頻譜效率,以達(dá)到低成本,高帶寬和靈活度的運(yùn)營。圖1是C-RAN的組網(wǎng)方式
圖1 C-RAN無線接入網(wǎng)組網(wǎng)方式
但是這種組網(wǎng)方式也帶來了新的挑戰(zhàn),其中一個(gè)要考慮的就是BBU和RRU間的CPRI信號經(jīng)過傳輸后的時(shí)延抖動(dòng)是否還滿足CPRI規(guī)范的要求。
二、CPRI接口時(shí)延抖動(dòng)的測試方法研究
CPRI接口傳統(tǒng)上只是用于BBU和RRU之間的直接光纖互聯(lián),傳輸距離在幾百米左右,而采用C-RAN的組網(wǎng)方式后傳輸距離會(huì)加長到幾十公里。為了節(jié)省光纖資源,必須通過合適的傳輸方式把多條CPRI鏈路數(shù)據(jù)復(fù)用到一根光纖上傳輸,目前采用的主流技術(shù)有彩光直驅(qū)和OTN承載兩種方式。彩光直驅(qū)的方式是把多路CPRI信號通過光合分波器通過WDM方式復(fù)用在一起,具有成本低、抖動(dòng)小的優(yōu)點(diǎn);而OTN承載,即CPRI over OTN方式,是把CPRI數(shù)據(jù)按照ITU-T G.709要求映射到傳輸網(wǎng)上傳輸,所以可靠性高、組網(wǎng)靈活。
無論采用哪種承載方式,都需要對CPRI信號經(jīng)過傳輸后的定時(shí)信息的時(shí)延和抖動(dòng)情況進(jìn)行測試,以確保不會(huì)影響CPRI協(xié)議本身對于時(shí)延抖動(dòng)的嚴(yán)格要求。目前TD-LTE技術(shù)可以允許約200us的時(shí)延,因此整個(gè)傳輸鏈路(包括光纖和傳輸設(shè)備)的時(shí)延不應(yīng)超過這個(gè)范圍。關(guān)于抖動(dòng)的要求可以參考CPRI的規(guī)范,從圖2可見,CPRI要求鏈路時(shí)延抖動(dòng)不能超過8.138ns,要求非常嚴(yán)格。(參考資料:CPRI Specification V6.0)。
圖2 CPRI規(guī)范對于鏈路時(shí)延精度的要求
隨著LTE技術(shù)的采用,基帶單元BBU和射頻拉遠(yuǎn)單元RRU間的CPRI數(shù)據(jù)傳輸速率急速攀升,目前已經(jīng)逐漸從2.4576Gbps過渡到6.144Gbps甚至9.8304Gbps。目前市面上的傳輸測試儀表或者支持不了9.8304Gbps的傳輸速率,或者無法進(jìn)行ns量級的精確時(shí)延抖動(dòng)測量,因此需要尋找一種新的測試方法,以對采用不同C-RAN組網(wǎng)傳輸方式時(shí)的時(shí)延抖動(dòng)進(jìn)行精確測試。
要進(jìn)行兩路信號間的時(shí)延和抖動(dòng)的測量需要在信號中找到相應(yīng)的同步標(biāo)志。經(jīng)過對CPRI協(xié)議的研究,發(fā)現(xiàn)在CPRI的幀結(jié)構(gòu)中,每66.67us會(huì)有一個(gè)超幀,如圖3所示。(參考資料:CPRI Specification V6.0)。而CPRI的物理層采用ANSI的8b/10b編碼方式,每個(gè)超幀的幀頭會(huì)有一個(gè)唯一的K28.5碼型標(biāo)識發(fā)送,因此可以用這個(gè)K28.5碼型標(biāo)識做為測試的依據(jù)。
圖3 CPRI的幀結(jié)構(gòu)
三、測試組網(wǎng)
CPRI傳輸時(shí)延抖動(dòng)的測試組網(wǎng)如圖4所示,測試系統(tǒng)采用是德公司(原安捷倫公司電子測量儀器部)的高帶寬示波器和光電轉(zhuǎn)換器搭建。
正常業(yè)務(wù)從BBU下發(fā)的CPRI信號經(jīng)過傳輸設(shè)備和光纖到達(dá)RRU側(cè),從傳輸設(shè)備的入口和出口側(cè)通過分光器各引出一路光纖信號接入測試系統(tǒng)。圖4中所示是進(jìn)行下行鏈路時(shí)延抖動(dòng)測試的組網(wǎng),也可以反過來進(jìn)行上行上行鏈路的測試。
從被測系統(tǒng)引出的兩路光纖信號經(jīng)N1075A-S32或者81495A光電轉(zhuǎn)換器把兩路光信號轉(zhuǎn)成電信號,然后用高帶寬的DSA90000X實(shí)時(shí)示波器進(jìn)行測量。
圖4 CPRI傳輸時(shí)延抖動(dòng)的測試組網(wǎng)
光電轉(zhuǎn)換器有兩種型號可供選擇。81495A是數(shù)據(jù)速率到10Gbps的低噪聲光電轉(zhuǎn)換器模塊,需要插在8163B的機(jī)箱里才可工作,其內(nèi)置10Gbps光信號的標(biāo)準(zhǔn)參考濾波器、光功率計(jì)及高帶寬放大器。81495A的光電轉(zhuǎn)換增益高達(dá)400V/W,因此輸入光信號強(qiáng)度可以低至-10dbm。為了節(jié)省體積和成本,一個(gè)8163B的機(jī)箱里可以同時(shí)插入2個(gè)81495A的模塊。而N1075A-S32是另一種光電轉(zhuǎn)換器,其數(shù)據(jù)速率最高到32Gbps且內(nèi)置分光器,但是由于光電轉(zhuǎn)換增益僅為110 V/W,為了保證最后輸出的電信號進(jìn)入示波器后仍然有較好的信噪比,所以需要被測光信號的光強(qiáng)不能太小(建議>-5dbm)。
DSA90000X系列是非常高性能的高帶寬實(shí)時(shí)示波器,最高帶寬可達(dá)33GHz,最大采樣率80G/s,固有抖動(dòng)小于150fs,同時(shí)可以捕獲4條CPRI接口的信號并進(jìn)行物理層解碼。發(fā)送端的信號經(jīng)光電轉(zhuǎn)換器后連接示波器通道1,接收端的信號經(jīng)光電轉(zhuǎn)換器后連接示波器通道3。測試中用實(shí)時(shí)示波器捕獲發(fā)端和收端的信號并進(jìn)行時(shí)延和抖動(dòng)的測量;
下圖是使用DSA90000X實(shí)時(shí)示波器配合N1075A光電轉(zhuǎn)換器做CPRI時(shí)延抖動(dòng)測試的實(shí)際測試環(huán)境。
圖5 實(shí)際的CPRI傳輸時(shí)延抖動(dòng)測試環(huán)境
四、時(shí)延測試步驟
時(shí)延測試的方法是測試BBU發(fā)出信號的超幀幀頭的時(shí)刻到RRU收到的信號的超幀幀頭的時(shí)間差。
1) 設(shè)置示波器對輸入信號波形進(jìn)進(jìn)行采集,采集時(shí)間至少為200us。如圖6中黃色通道CH1波形為BBU發(fā)出的CPRI信號波形,藍(lán)色通道CH3波形為RRU收到的CPRI信號波形。
2) 設(shè)置示波器對通道CH1和通道CH3的波形進(jìn)行解碼,并分別搜索CPRI超幀頭的同步字符。
3) 記錄通道CH1第一個(gè)同步字符K28.5發(fā)生的時(shí)刻,如圖6中的值為: -59.90911203us。
4) 記錄通道CH3中后續(xù)的同步字符K28.5發(fā)生的時(shí)刻,如圖7中的值為:-41.52044482us。
5) 把兩個(gè)測量結(jié)果相減即為光纖加上傳輸設(shè)備造成的時(shí)延。即傳輸系統(tǒng)時(shí)延=-41.52044482us -(-59.90911203us)=18.38866721us。
此時(shí)測量出的時(shí)延為光纖時(shí)延加上傳輸設(shè)備造成的時(shí)延,可以減去光纖長度造成的時(shí)延得到傳輸設(shè)備時(shí)延。如果測試環(huán)境允許也可以直接采用0km光纖進(jìn)行測試,以得到傳輸設(shè)備本身的時(shí)延數(shù)據(jù)。
注意:由于CPRI協(xié)議中每66.67us會(huì)有一個(gè)超幀的幀頭發(fā)送,因此同步字符會(huì)以66.67us為周期出現(xiàn),當(dāng)使用長光纖時(shí)需要注意合適的同步字符位置的選取。比如使用15km光纖時(shí),光纖造成的時(shí)延約為75us,已經(jīng)超過了超幀幀頭的出現(xiàn)周期,所以在第4步中應(yīng)選擇相對于第3步的時(shí)間結(jié)果75us之后的第一個(gè)同步字符出現(xiàn)的時(shí)刻作為有效數(shù)據(jù)。
圖6 BBU發(fā)出的CPRI信號解碼結(jié)果
圖7 RRU收到的CPRI信號解碼結(jié)果
五、抖動(dòng)測試步驟
當(dāng)進(jìn)行完系統(tǒng)的時(shí)延測試時(shí),下一步是進(jìn)行CPRI信號經(jīng)傳輸后抖動(dòng)的測量。這需要進(jìn)行一段時(shí)間內(nèi)的多次連續(xù)測量并比較輸入信號和輸出信號間時(shí)延的相對變化范圍。測試步驟如下:
1) 根據(jù)前面時(shí)延測量結(jié)果,對兩路信號間的固有時(shí)延在示波器里進(jìn)行補(bǔ)償,如圖8所示??梢钥吹竭M(jìn)行補(bǔ)償后輸入和輸出信號基本重合。
圖8固有時(shí)延的補(bǔ)償
2) 設(shè)置示波器對通道CH1的K28.5同步字符觸發(fā)并進(jìn)行多次波形采集,這樣通道CH1的同步字符會(huì)一直保持在時(shí)間的零點(diǎn),即屏幕的正中央。如果系統(tǒng)有抖動(dòng),通道CH3的K28.5同步字符的發(fā)生時(shí)刻會(huì)有左右的時(shí)間變化。圖9分別是三次測量中,通道CH3的K28.5同步字符發(fā)生的時(shí)刻,可以明顯看到時(shí)延的變化情況。
圖9 三次測量中時(shí)延的變化情況
3)在示波器的Trigger Action里設(shè)置自動(dòng)保存測量結(jié)果,如圖10所示,可以設(shè)置自動(dòng)保存測量結(jié)果的次數(shù)。隨后用戶可以對測量結(jié)果進(jìn)行整理和統(tǒng)計(jì)分析。
圖10 設(shè)置自動(dòng)保存每次測量結(jié)果的拷屏
六、測試結(jié)果分析
采用前述的測試方法在機(jī)房環(huán)境理對市面上4家主流的設(shè)備廠商的無線接入網(wǎng)設(shè)備進(jìn)行了CPRI時(shí)延抖動(dòng)的測試。其中2家采用OTN傳輸方案,2家采用彩光直驅(qū)方案,測試中使用的光纖長度從0km~15km不等,CPRI接口上承載9.8304Gbps的真實(shí)業(yè)務(wù)。每次測試都是在約3分鐘的時(shí)間內(nèi)進(jìn)行30次測量并對結(jié)果進(jìn)行統(tǒng)計(jì)分析。
測試結(jié)論如下:
采用OTN傳輸方案時(shí),端到端由于設(shè)備造成的時(shí)延(扣除光纖時(shí)延以后)普遍在幾個(gè)us左右,抖動(dòng)約在2~4ns不等。這可能由于有OTN的成幀解幀過程會(huì)造成一定的時(shí)延和抖動(dòng)。收發(fā)端進(jìn)行精確的時(shí)鐘同步可能有助于減小時(shí)延抖動(dòng)。
采用彩光直驅(qū)方案時(shí),端到端由于設(shè)備造成的時(shí)延(扣除光纖時(shí)延以后)普遍在幾百ns左右,抖動(dòng)都<300ps。這可能由于直驅(qū)方式?jīng)]有數(shù)據(jù)處理,所以時(shí)延和抖動(dòng)都較小。
在機(jī)房環(huán)境下的短時(shí)間測量中,改變不同的光纖長度造成的只是絕對時(shí)延的變化,對于抖動(dòng)的影響幾乎很小(<100ps)。實(shí)際運(yùn)營情況下由于光纖造成的抖動(dòng)還有待研究。
從測試結(jié)果來看,彩光直驅(qū)和OTN傳輸造成的時(shí)延抖動(dòng)都沒有超過CPRI規(guī)范的8ns的要求。彩光直驅(qū)時(shí)由于設(shè)備本身造成的時(shí)延和抖動(dòng)相比OTN傳輸時(shí)都要小一個(gè)數(shù)量級。采用OTN方案時(shí)要重點(diǎn)關(guān)注在不同時(shí)鐘同步情況下的抖動(dòng)情況。
以上測試結(jié)果和實(shí)際預(yù)期一致,說明測試方法是真實(shí)有效的。不過由于資源和時(shí)間所限,以上都是短時(shí)間、小樣本量的測試。實(shí)際運(yùn)營情況下的長時(shí)間、大樣本量的測試還有待具體的測試環(huán)境。
七、測試方案優(yōu)缺點(diǎn)分析
這種基于實(shí)時(shí)示波器和光電轉(zhuǎn)換器的CPRI接口時(shí)延抖動(dòng)測試方法非常精確,測試儀表的硬件固有抖動(dòng)小于150fs,考慮到解碼精度帶來的誤差總體測量精度小于1個(gè)數(shù)據(jù)bit周期(對于9.8304G的CPRI信號來說相當(dāng)于約100ps)。因此,這種測試方案可以在目前沒有成熟傳輸測試儀表的階段有效完成精確的時(shí)延抖動(dòng)測量,方便設(shè)備廠商在研發(fā)階段進(jìn)行實(shí)際測試,也可供運(yùn)營商在前期規(guī)劃階段對不同組網(wǎng)方案進(jìn)行評估。
另外,這套測量方案的主體是高帶寬的實(shí)時(shí)示波器,這款設(shè)備還可以用用于BBR和RRU內(nèi)部電路如SFP+、PCIE、DDR、時(shí)鐘等接口的調(diào)試。
目前這套測試方案的不足之處在于還不是全自動(dòng)的參數(shù)測試。測試前還需要手動(dòng)進(jìn)行示波器的設(shè)置,測試后還不能自動(dòng)對測試結(jié)果進(jìn)行統(tǒng)計(jì)分析。
不過綜合考慮測試精度以及可行性,這套方案基本可以滿足現(xiàn)階段進(jìn)行CPRI時(shí)延抖動(dòng)進(jìn)行摸底測試的需要,以推動(dòng)綠色無線接入網(wǎng)的商用化進(jìn)程。未來隨著測試需求的進(jìn)一步增多,也有可能把這套測試方案開發(fā)成自動(dòng)測試軟件。