自舉電路也叫升壓電路,是利用自舉升壓二極管,自舉升壓電容等電子元件,使電容放電電壓和電源電壓疊加,從而使電壓升高,有的電路升高的電壓能達(dá)到數(shù)倍電源電壓。
原理
舉個簡單的例子:有一個12V的電路,電路中有一個場效應(yīng)管需要15V的驅(qū)動電壓,這個電壓怎么弄出來?就是用自舉。通常用一個電容和一個二極管,電容存儲電荷,二極管防止電流倒灌,頻率較高的時候,自舉電路的電壓就是電路輸入的電壓加上電容上的電壓,起到升壓的作用。
自舉電路只是在實(shí)踐中定的名稱,在理論上沒有這個概念。自舉電路主要是在甲乙類單電源互補(bǔ)對稱電路中使用較為普遍。甲乙類單電源互補(bǔ)對稱電路在理論上可以使輸出電壓Vo達(dá)到Vcc的一半,但在實(shí)際的測試中,輸出電壓遠(yuǎn)達(dá)不到Vcc的一半。其中重要的原因就需要一個高于Vcc的電壓。所以采用自舉電路來升壓。
常用自舉電路(摘自fairchild,使用說明書AN-6076《供高電壓柵極驅(qū)動器IC 使用的自舉電路的設(shè)計和使用準(zhǔn)則》)
開關(guān)直流升壓電路(即所謂的boost或者step-up電路)原理
the boost converter,或者叫step-up converter,是一種開關(guān)直流升壓電路,它可以是輸出電壓比輸入電壓高。基本電路圖見圖1.
假定那個開關(guān)(三極管或者mos管)已經(jīng)斷開了很長時間,所有的元件都處于理想狀態(tài),電容電壓等于輸入電壓。下面要分充電和放電兩個部分來說明這個電路。
在充電過程中,開關(guān)閉合(三極管導(dǎo)通),等效電路如圖二,開關(guān)(三極管)處用導(dǎo)線代替。這時,輸入電壓流過電感。二極管防止電容對地放電。由于輸入是直流電,所以電感上的電流以一定的比率線性增加,這個比率跟電感大小有關(guān)。隨著電感電流增加,電感里儲存了一些能量。
如圖,這是當(dāng)開關(guān)斷開(三極管截止)時的等效電路。當(dāng)開關(guān)斷開(三極管截止)時,由于電感的電流 保持特性,流經(jīng)電感的電流不會馬上變?yōu)?,而是緩慢的由充電完畢時的值變?yōu)?。而原來的電路已斷開,于是電感只能通過新電路放電,即電感開始給電容充電, 電容兩端電壓升高,此時電壓已經(jīng)高于輸入電壓了。升壓完畢。 說起來升壓過程就是一個電感的能量傳遞過程。充電時,電感吸收能量,放電時電感放出能量。如果電感量足夠大,那么在輸出端就可以在放電過程中保持一個持續(xù)的電流。如果這個通斷的過程不斷重復(fù),就可以在電容兩端得到高于輸入電壓的電壓。 [2]
P 溝道高端柵極驅(qū)動器
直接式驅(qū)動器:適用于最大輸入電壓小于器件的柵- 源極擊穿電壓。
開放式收集器:方法簡單,但是不適用于直接驅(qū)動高速電路中的MOSFET。
電平轉(zhuǎn)換驅(qū)動器:適用于高速應(yīng)用,能夠與常見PWM 控制器無縫式工作。
N 溝道高端柵極驅(qū)動器
直接式驅(qū)動器:MOSFET最簡單的高端應(yīng)用,由PWM 控制器或以地為基準(zhǔn)的驅(qū)動器直接驅(qū)動,但它必須滿足下面兩個條件:
VCC
浮動電源柵極驅(qū)動器:獨(dú)立電源的成本影響是很顯著的;光耦合器相對昂貴,而且?guī)捰邢?,對噪聲敏感?
變壓器耦合式驅(qū)動器:在不確定的周期內(nèi)充分控制柵極;但在某種程度上,限制了開關(guān)性能。但是,這是可以改善的,只是電路更復(fù)雜了。
電荷泵驅(qū)動器:對于開關(guān)應(yīng)用,導(dǎo)通時間往往很長;由于電壓倍增電路的效率低,可能需要更多低電壓級泵。
自舉式驅(qū)動器:簡單,廉價,也有局限;例如,占空比和導(dǎo)通時間都受到刷新自舉電容的限制。需要電平轉(zhuǎn)換,以及帶來的相關(guān)問題。
電感最廣泛的使用場景在供電,升壓電路和降壓電路,都需要有一顆電感來儲存能量和釋放能量。很多小白朋友都太清楚電感升壓電路的原理,所有的升壓和降壓電路,都用到了“電感電流不能突變”這個重要原理。即電感的中的電流是有慣性的,這個慣性就是電感儲存的能量。
示例的LCD屏的串聯(lián)背光升壓電路中,升壓IC主要通過LX腳來控制電感上的開關(guān)。在電療儀升壓電路中通過單片機(jī)的PWM口來控制電感的開關(guān)。
單純看文字不容易看得懂,我們用圖示來標(biāo)明電流的走向。
(這里強(qiáng)調(diào)一下二極管的“單向?qū)ā钡奶攸c(diǎn),二極管中的電流只能朝一個方向走,反向是不能通過電流的。)
首先,開關(guān)打開,電感對地短路,電感內(nèi)部產(chǎn)生電流。(芯片內(nèi)部有開關(guān),另一張圖的三極管也是起到開關(guān)的用途)
然后,開關(guān)關(guān)閉,電感對地的電流被截斷,但是電感上的電流不能立刻消失,需要找到泄放途徑,于是就跑到負(fù)載端去了。負(fù)載消耗不了那么多電流,于是電感的電流就變成了負(fù)載兩端的電壓,把電壓升上去了。
下一個循環(huán),開關(guān)打開,電感產(chǎn)生電流,雖然二極管右側(cè)電壓比左側(cè)高,但是無法反向流過去,就維持了高電壓。
然后開關(guān)再關(guān)閉,電感再向負(fù)載釋放能量,電壓繼續(xù)上升。如此循環(huán),電感不斷的充電放電,為二極管后段提供脈沖能量。
通過控制開關(guān)打開和關(guān)閉的時間比例,就可以控制有多少能量從電感輸出。這就是通過改變控制信號的占空比,來適應(yīng)負(fù)載的變化,使電壓始終維持在需要的數(shù)值。
對于普通升壓電路(上圖左側(cè)),有負(fù)載、有過壓保護(hù)(OVP)、也有電壓檢測,電壓會上升到一個穩(wěn)定值。
對于電療儀電路這種簡易升壓電路(上圖右側(cè)),人體電阻在兆歐級別,基本相當(dāng)于開路了,每一次電感的充放電,都會把二極管后段的電壓往上提升,如果用示波器測量后段電壓,會是一個階梯狀上升的形狀。通過控制開關(guān)的次數(shù),可以控制電壓升高的幅度,最高可以超過200V。因?yàn)殡娏亢苌?,人體只會感受到輕微電擊,不會造成危險。