當(dāng)前位置:首頁 > 汽車電子 > 汽車電子技術(shù)文庫
[導(dǎo)讀] (文章來源:車智) 進入到2020年,自動駕駛技術(shù)走到了需要規(guī)模商業(yè)化證明技術(shù)價值的時候。不管是封閉或半封閉場景的礦區(qū)、港口和園區(qū),還是公開道路的RoboTaxi、RoboTruck等,

(文章來源:車智)

進入到2020年,自動駕駛技術(shù)走到了需要規(guī)模商業(yè)化證明技術(shù)價值的時候。不管是封閉或半封閉場景的礦區(qū)、港口和園區(qū),還是公開道路的RoboTaxi、RoboTruck等,技術(shù)都是自動駕駛在不同場景商業(yè)化的基礎(chǔ)。

本報告覆蓋了自動駕駛汽車所需要的感知、定圖與定位、傳感器融合、機器學(xué)習(xí)方法、數(shù)據(jù)收集與處理、路徑規(guī)劃、自動駕駛架構(gòu)、乘客體驗、自動駕駛車輛與外界交互、自動駕駛對汽車部件的挑戰(zhàn)(如功耗、尺寸、重量等)、通訊與連接(車路協(xié)同、云端管理平臺)等技術(shù)領(lǐng)域的討論,并且提供相應(yīng)的各自動駕駛公司的實施案例。?

本報告是由美國、中國、以色列、加拿大、英國等全球不同國家和地區(qū)的自動駕駛專家,針對自動駕駛技術(shù)的硬件和軟件技術(shù),進行的全面闡述,方便各位讀者能夠從技術(shù)角度,了解最新的技術(shù)動態(tài),從而全面了解自動駕駛汽車。 ?

本報告的案例大多數(shù)來自汽車領(lǐng)域,這也是目前自動駕駛行業(yè)最火熱的應(yīng)用場景,但是,服務(wù)個人出行的汽車并不是自動駕駛技術(shù)影響深遠的行業(yè),其他的行業(yè),如公共交通、貨運、農(nóng)業(yè)、礦業(yè)等領(lǐng)域,也同樣是自動駕駛技術(shù)應(yīng)用的廣泛天地。?本報告為英文報告,由于時間關(guān)系,車智并未翻譯為中文。借此機會,車智希望外文出色(主要是英文)的讀者朋友,加入車智翻譯組,希望將一些好的報告,翻譯為中文,方便國內(nèi)的從業(yè)者學(xué)習(xí),促進國內(nèi)自動駕駛的發(fā)展。

各類傳感器,用于自動駕駛汽車感知環(huán)境,如同人類的眼睛,自動駕駛汽車的基礎(chǔ)部件;?自動駕駛汽車的傳感器主要有五種,包括了:1、Long range RADAR;2、Camera;3、LIDAR;4、Short/Medium range RADAR;5、Ultrasound;這些不同的傳感器,主要用于不同距離、不同類型的物體感知,為自動駕駛汽車判斷周邊環(huán)境,提供最重要的信息來源,另外,還有一個環(huán)境感知的信息來源是車路協(xié)同的來源,這點報告中也有參數(shù)。

關(guān)于傳感器的選擇,主要是根據(jù)下面的技術(shù)因素進行判斷:掃描范圍,確定必須對被感測的對象做出反應(yīng)的時間;分辨率,確定傳感器可以為自動駕駛車輛提供的環(huán)境細(xì)節(jié);視場或角度分辨率,確定要覆蓋、要感知的區(qū)域需要傳感器的數(shù)量;刷新率,確定來自傳感器的信息更新的頻率;感知對象數(shù)量,能夠區(qū)分3D中的靜態(tài)對象數(shù)量和動態(tài)對象數(shù)量,并且確定需要跟蹤的對象數(shù)量。

可靠性和準(zhǔn)確性,傳感器在不同環(huán)境下的總體可靠性和準(zhǔn)確性;成本、大小和軟件兼容性,這是量產(chǎn)的技術(shù)條件之一;生成的數(shù)據(jù)量,這決定了車載計算單元的計算量,現(xiàn)在傳感器偏向智能傳感器,也就是,不僅僅是感知,還會分辨信息,把對車輛行駛影響最重要的數(shù)據(jù)傳輸給車載計算單元,從而減少其計算負(fù)荷。

傳感器因為一直暴露在環(huán)境中,容易受到環(huán)境的污染,從而影響傳感器的工作效率,所以,都需要對傳感器進行清潔。Tesla的傳感器,具有加熱功能,可抵御霜凍和霧氣;Volvo的傳感器配備有噴水清潔系統(tǒng),用于清潔粉塵;Waymo使用的Chrysler Pacifica的傳感器有噴水系統(tǒng)和刮水器。

SLAM是一個復(fù)雜的過程,因為本地化需要地圖,并且映射需要良好的位置估計。盡管長期以來人們一直認(rèn)為機器人要成為自主的基本“雞或蛋”問題,但在1980年代和90年代中期的突破性研究從概念和理論上解決了SLAM。從那時起,已經(jīng)開發(fā)了多種SLAM方法,其中大多數(shù)使用概率概念。?

為了更準(zhǔn)確地執(zhí)行SLAM,傳感器融合開始發(fā)揮作用。傳感器融合是組合來自多個傳感器和數(shù)據(jù)庫的數(shù)據(jù)以獲得改進信息的過程。它是一個多級過程,處理數(shù)據(jù)的關(guān)聯(lián),相關(guān)性和組合,與僅使用單個數(shù)據(jù)源相比,可以實現(xiàn)更便宜,更高質(zhì)量或更多相關(guān)信息。

對于從傳感器數(shù)據(jù)到運動所需的所有處理和決策,通常使用兩種不同的AI方法:?順序地,將驅(qū)動過程分解為分層管道的組件,每個步驟(傳感,定位,路徑規(guī)劃,運動控制)都由特定的軟件元素處理,管道的每個組件都將數(shù)據(jù)饋送到下一個;基于深度學(xué)習(xí)的端到端解決方案,負(fù)責(zé)所有這些功能。

哪種方法最適合AV的問題是不斷爭論的領(lǐng)域。傳統(tǒng)且最常見的方法包括將自動駕駛問題分解為多個子問題,并使用專用的機器學(xué)習(xí)算法技術(shù)依次解決每個子問題,這些算法包括計算機視覺,傳感器融合,定位,控制理論和路徑規(guī)劃 端到端(e2e)學(xué)習(xí)作為一種解決方案,可以解決自動駕駛汽車復(fù)雜AI系統(tǒng)所面臨的挑戰(zhàn),因此越來越受到人們的關(guān)注。

端到端(e2e)學(xué)習(xí)將迭代學(xué)習(xí)應(yīng)用于整個復(fù)雜系統(tǒng),并已在深度學(xué)習(xí)的背景下得到普及。當(dāng)前,不同類型的機器學(xué)習(xí)算法被用于自動駕駛汽車中的不同應(yīng)用。本質(zhì)上,機器學(xué)習(xí)根據(jù)提供的一組訓(xùn)練數(shù)據(jù)將一組輸入映射到一組輸出。卷積神經(jīng)網(wǎng)絡(luò)(CNN);遞歸神經(jīng)網(wǎng)絡(luò)(RNN);深度強化學(xué)習(xí)(DRL);是應(yīng)用于自動駕駛的最常見的深度學(xué)習(xí)方法。

CNN——主要用于處理圖像和空間信息,以提取感興趣的特征并識別環(huán)境中的對象。這些神經(jīng)網(wǎng)絡(luò)由卷積層組成:卷積過濾器的集合,它們試圖區(qū)分圖像元素或輸入數(shù)據(jù)以對其進行標(biāo)記。該卷積層的輸出被饋送到一種算法中,該算法將它們組合起來以預(yù)測圖像的最佳描述。最終的軟件組件通常稱為對象分類器,因為它可以對圖像中的對象進行分類,例如路牌或其他汽車。?

RNN——當(dāng)處理諸如視頻之類的時間信息時,RNN是強大的工具。在這些網(wǎng)絡(luò)中,先前步驟的輸出作為輸入被饋送到網(wǎng)絡(luò)中,從而使信息和知識能夠持久存在于網(wǎng)絡(luò)中并被上下文化。?

DRL——將深度學(xué)習(xí)(DL)和強化學(xué)習(xí)相結(jié)合。DRL方法使軟件定義的“代理”可以使用獎勵功能,在虛擬環(huán)境中學(xué)習(xí)最佳行動,以實現(xiàn)其目標(biāo)。這些面向目標(biāo)的算法學(xué)習(xí)如何實現(xiàn)目標(biāo),或如何在多個步驟中沿特定維度最大化。盡管前景廣闊,但DRL面臨的挑戰(zhàn)是設(shè)計用于駕駛車輛的正確獎勵功能。在自動駕駛汽車中,深度強化學(xué)習(xí)被認(rèn)為仍處于早期階段。?

這些方法不一定孤立地存在。例如,特斯拉(Tesla)等公司依靠混合形式,它們試圖一起使用多種方法來提高準(zhǔn)確性并減少計算需求。

一次在多個任務(wù)上訓(xùn)練網(wǎng)絡(luò)是深度學(xué)習(xí)中的常見做法,通常稱為多任務(wù)訓(xùn)練 或輔助任務(wù)訓(xùn)練。這是為了避免過度擬合,這是神經(jīng)網(wǎng)絡(luò)的常見問題。當(dāng)機器學(xué)習(xí)算法針對特定任務(wù)進行訓(xùn)練時,它會變得非常專注于模仿它所訓(xùn)練的數(shù)據(jù),從而在嘗試進行內(nèi)插或外推時其輸出變得不切實際。通過在多個任務(wù)上訓(xùn)練機器學(xué)習(xí)算法,網(wǎng)絡(luò)的核心將專注于發(fā)現(xiàn)對所有目的都有用的常規(guī)功能,而不是僅僅專注于一項任務(wù)。這可以使輸出對應(yīng)用程序更加現(xiàn)實和有用。
? ?

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉