白光LED種類:照明用白光LED的主要技術路線有: ①藍光LED+熒光粉型; ②RGB LED 型; ③紫外光LED +熒光粉型
1、藍光-LED芯片 + 黃綠熒光粉型包括多色熒光粉衍生等型
黃綠熒光粉層吸收一部分LED芯片的藍光產生光致發(fā)光,另一部分來自LED芯片的藍光透射出熒光粉層后與熒光粉發(fā)出的黃綠光在空間各點匯合,紅綠藍三色光混合組成白光;這種方式中,外量子效率之一的熒光粉光致發(fā)光轉換效率的最高理論值將不超過75%;而芯片出光的提取率最高也只能達到70%左右,所以,理論上藍光型白光LED光效最高將不超過340 Lm/W,前幾年CREE達到303Lm/W,如果測試結果準確的話是值得慶賀的。
2、紅綠藍三基色組合RGB LED 型包括RGBW- LED型等
R-LED(紅)+ G-LED(綠)+ B- LED(藍)三個發(fā)光二極管組合在一起,所發(fā)出的紅綠藍三基色光在空間直接混合組成白光。要想用這種方式產生高光效白光,首先各色LED特別是綠色LED必須是高效光源,這從“等能白光”中綠光約占69%可見。而目前,藍光和紅光LED的光效已經做到很高了,內量子效率分別超過90%和95%,但是綠光LED的內量子效率卻遠遠落后。這種以GaN為主的LED綠光效率不高的現象被稱為“綠光缺口”。其主要原因是綠光LED還沒找到專屬自己的外延材料,現有磷砷氮化物系列材料在黃綠色譜范圍里效率都很低,而采用紅光或藍光的外延材料制作綠光LED,在較低的電流密度條件下,因為沒有熒光粉轉換損耗,綠光LED要比藍光+熒光粉型綠光的光效更高,據報道在 1mA電流條件下其發(fā)光效率達到291Lm/W。但在較大電流下Droop效應導致的綠光的光效下降很顯著,當電流密度增加,光效下降很快,在350mA電流下,光效是108Lm/W,在1A條件下,光效下降到66Lm/W。
對于III族磷化物而言,發(fā)射光到綠色波段成為了材料系統的基礎障礙。改變AlInGaP的成分讓它發(fā)綠光,而不是紅光、橙色或者黃色—造成載波限制不充分,是由于材料系統相對低的能隙,排除有效的輻射復合。
相比之下,III族氮化物要達到高效難度更大,但困難并不是無法逾越的。用這個系統,將光延伸到綠光波段,會造成效率降低的兩個因素是:外部量子效率和電效率的下降。外部量子效率下降來源于盡管綠光帶隙更低,但綠光LED采用GaN的高正向電壓,使得電源轉換率下降。第二個缺點是綠光LED隨注入電流密度增大而下降,被droop效應所困。Droop效應也出現在藍光 LED中,但在綠色LED中影響更甚,導致常規(guī)的工作電流效率更低。然而,造成droop效應原因猜測很多,不僅僅只有俄歇復合這一種一其中包括了錯位、載體溢出或者電子泄漏。后者是由高壓內部電場增強的。
因此,提高綠光LED光效的途徑:一方面研究現有外延材料條件下如何減小Droop效應來提升光效;第二方面,用藍光LED加綠色熒光粉的光致發(fā)光轉換發(fā)出綠光,該方法可以得到高光效綠光,理論上來說可達到高于目前的白光光效,它屬于非自發(fā)綠光,其光譜展寬所導致的色純度下降,對于顯示來說是不利的,但對于普通照明來說沒有問題,該方式獲得的綠光光效有大于340 Lm/W的可能性,但組合白光后仍然不會超過340 Lm/W;第三,繼續(xù)研究尋找專屬自己的外延材料,只有這樣才有一線希望通過獲得比340 Lm/w高較多的綠光后,再由紅綠藍三個三基色LED組合后的白光才可能高于藍光芯片型白光LED的光效極限340 Lm/W。
3、紫外光LED芯片 + 三基色熒光粉發(fā)光
上述兩種白光LED的主要固有缺陷是光度和色度空間分布不均勻。而紫外光是人眼無法感知看到的,因此,紫外光出射芯片后被封裝層的三基色熒光粉吸收,由熒光粉的光致發(fā)光轉換成白光,再向空間發(fā)射。這是它的最大優(yōu)點,就像傳統熒光燈一樣,它不存在空間顏色不均勻。但紫外光芯片型白光LED的理論光效不可能高于藍光芯片型白光的理論值,更不可能高于RGB型白光的理論值。但是只有通過研發(fā)適合紫外光激發(fā)的高效三基色熒光粉才有可能得到接近甚至比上述兩種白光LED現階段光效更高的紫外光型白光LED,越靠近藍光的紫外光型LED其可能性越大,中波和短波紫外線型的白光LED就不可能了。
李自力,教授級高級工程師,廣東省市場監(jiān)管局缺陷產品管理中心主持日常工作副主任(廣東質檢院電器部副部長)。2018年獲《中國標準創(chuàng)新貢獻三等獎》,牽頭制定了11項照明國家標準,作為國際IEC智能照明標準專家組成員參與國際IEC標準制定,參加國家重點研發(fā)計劃和“863”科研項目評審,并參與全國CCC照明指定實驗室核查。