當前位置:首頁 > 消費電子 > 觸控感測
[導讀] 高斯濾波器是一種線性濾波器,能夠有效的抑制噪聲,平滑圖像。其作用原理和均值濾波器類似,都是取濾波器窗口內的像素的均值作為輸出。其窗口模板的系數(shù)和均值濾波器不同,均值濾波器的模板系數(shù)都是相同的為1

高斯濾波器是一種線性濾波器,能夠有效的抑制噪聲,平滑圖像。其作用原理和均值濾波器類似,都是取濾波器窗口內的像素的均值作為輸出。其窗口模板的系數(shù)和均值濾波器不同,均值濾波器的模板系數(shù)都是相同的為1;而高斯濾波器的模板系數(shù),則隨著距離模板中心的增大而系數(shù)減小。所以,高斯濾波器相比于均值濾波器對圖像個模糊程度較小。


什么是高斯濾波器

既然名稱為高斯濾波器,那么其和高斯分布(正態(tài)分布)是有一定的關系的。一個二維的高斯函數(shù)如下:


其中(x,y)(x,y)為點坐標,在圖像處理中可認為是整數(shù);σσ是標準差。要想得到一個高斯濾波器的模板,可以對高斯函數(shù)進行離散化,得到的高斯函數(shù)值作為模板的系數(shù)。例如:要產(chǎn)生一個3×33×3的高斯濾波器模板,以模板的中心位置為坐標原點進行取樣。模板在各個位置的坐標,如下所示(x軸水平向右,y軸豎直向下)


這樣,將各個位置的坐標帶入到高斯函數(shù)中,得到的值就是模板的系數(shù)。

對于窗口模板的大小為(2k+1)×(2k+1),模板中各個元素值的計算公式如下:


這樣計算出來的模板有兩種形式:小數(shù)和整數(shù)。

小數(shù)形式的模板,就是直接計算得到的值,沒有經(jīng)過任何的處理;

整數(shù)形式的,則需要進行歸一化處理,將模板左上角的值歸一化為1,下面會具體介紹。使用整數(shù)的模板時,需要在模板的前面加一個系數(shù),系數(shù)為也就是模板系數(shù)和的倒數(shù)。


高斯模板的生成

知道模板生成的原理,實現(xiàn)起來也就不困難了

void generateGaussianTemplate(double window[][11], int ksize, double?sigma)
{
static const double pi = 3.1415926;
int center = ksize / 2; // 模板的中心位置,也就是坐標的原點
double x2, y2;
for (int i = 0; i < ksize; i++)
{
x2 = pow(i - center, 2);
for (int j = 0; j < ksize; j++)
{
y2 = pow(j - center, 2);
double g = exp(-(x2 + y2) / (2 * sigma * sigma));
g /= 2 * pi * sigma;
window[i][j] = g;
}
}
double k = 1 / window[0][0]; // 將左上角的系數(shù)歸一化為1
for (int i = 0; i < ksize; i++)
{
for (int j = 0; j < ksize; j++)
{
window[i][j] *= k;
}
}
}
需要一個二維數(shù)組,存放生成的系數(shù)(這里假設模板的最大尺寸不會超過11);第二個參數(shù)是模板的大小(不要超過11);第三個參數(shù)就比較重要了,是高斯分布的標準差。

生成的過程,首先根據(jù)模板的大小,找到模板的中心位置ksize/2。然后就是遍歷,根據(jù)高斯分布的函數(shù),計算模板中每個系數(shù)的值。

需要注意的是,最后歸一化的過程,使用模板左上角的系數(shù)的倒數(shù)作為歸一化的系數(shù)(左上角的系數(shù)值被歸一化為1),模板中的每個系數(shù)都乘以該值(左上角系數(shù)的倒數(shù)),然后將得到的值取整,就得到了整數(shù)型的高斯濾波器模板。


下面截圖生成的是,大小為3×3,σ=0.83×3,σ=0.8的模板


對上述解結果取整后得到如下模板:

這個模板就比較熟悉了,其就是根據(jù)σ=0.8的高斯函數(shù)生成的模板。

至于小數(shù)形式的生成也比較簡單,去掉歸一化的過程,并且在求解過程后,模板的每個系數(shù)要除以所有系數(shù)的和。具體代碼如下:

void generateGaussianTemplate(double window[][11], int ksize, double sigma)
{
staTIc const double pi = 3.1415926;
int center = ksize / 2; // 模板的中心位置,也就是坐標的原點
double x2, y2;
double sum = 0;
for (int i = 0; i < ksize; i++)
{
x2 = pow(i - center, 2);
for (int j = 0; j < ksize; j++)
{
y2 = pow(j - center, 2);
double g = exp(-(x2 + y2) / (2 * sigma * sigma));
g /= 2 * pi * sigma;
sum += g;
window[i][j] = g;
}
}
//double k = 1 / window[0][0]; // 將左上角的系數(shù)歸一化為1
for (int i = 0; i < ksize; i++)
{
for (int j = 0; j < ksize; j++)
{
window[i][j] /= sum;
}
}
}
3×3,σ=0.8的小數(shù)型模板。

σσ值的意義及選取

通過上述的實現(xiàn)過程,不難發(fā)現(xiàn),高斯濾波器模板的生成最重要的參數(shù)就是高斯分布的標準差σσ。標準差代表著數(shù)據(jù)的離散程度,如果σσ較小,那么生成的模板的中心系數(shù)較大,而周圍的系數(shù)較小,這樣對圖像的平滑效果就不是很明顯;反之,σσ較大,則生成的模板的各個系數(shù)相差就不是很大,比較類似均值模板,對圖像的平滑效果比較明顯。

來看下一維高斯分布的概率分布密度圖:

橫軸表示可能得取值x,豎軸表示概率分布密度F(x),那么不難理解這樣一個曲線與x軸圍成的圖形面積為1。σσ(標準差)決定了這個圖形的寬度,可以得出這樣的結論:σσ越大,則圖形越寬,尖峰越小,圖形較為平緩;σσ越小,則圖形越窄,越集中,中間部分也就越尖,圖形變化比較劇烈。這其實很好理解,如果sigma也就是標準差越大,則表示該密度分布一定比較分散,由于面積為1,于是尖峰部分減小,寬度越寬(分布越分散);同理,當σσ越小時,說明密度分布較為集中,于是尖峰越尖,寬度越窄!

于是可以得到如下結論:

σσ越大,分布越分散,各部分比重差別不大,于是生成的模板各元素值差別不大,類似于平均模板;

σσ越小,分布越集中,中間部分所占比重遠遠高于其他部分,反映到高斯模板上就是中心元素值遠遠大于其他元素值,于是自然而然就相當于中間值得點運算。

基于OpenCV的實現(xiàn)

在生成高斯模板好,其簡單的實現(xiàn)和其他的空間濾波器沒有區(qū)別,具體代碼如下:

void GaussianFilter(const Mat &src, Mat &dst, int ksize, double sigma)
{
CV_Assert(src.channels() || src.channels() == 3); // 只處理單通道或者三通道圖像
const staTIc double pi = 3.1415926;
// 根據(jù)窗口大小和sigma生成高斯濾波器模板
// 申請一個二維數(shù)組,存放生成的高斯模板矩陣
double **templatematrix?= new double*[ksize];
for (int i = 0; i < ksize; i++)
templateMatrix[i] = new double[ksize];
int origin = ksize / 2; // 以模板的中心為原點
double x2, y2;
double sum = 0;
for (int i = 0; i < ksize; i++)
{
x2 = pow(i - origin, 2);
for (int j = 0; j < ksize; j++)
{
y2 = pow(j - origin, 2);
// 高斯函數(shù)前的常數(shù)可以不用計算,會在歸一化的過程中給消去
double g = exp(-(x2 + y2) / (2 * sigma * sigma));
sum += g;
templateMatrix[i][j] = g;
}
}
for (int i = 0; i < ksize; i++)
{
for (int j = 0; j < ksize; j++)
{
templateMatrix[i][j] /= sum;
cout

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯(lián)合牽頭組建的NVI技術創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術創(chuàng)新聯(lián)...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉