當(dāng)前位置:首頁 > 半導(dǎo)體 > 半導(dǎo)體
[導(dǎo)讀]先進(jìn)制程與先進(jìn)封裝成為延續(xù)摩爾定律的關(guān)鍵技術(shù),2.5D、3D 和Chiplets 等技術(shù)在近年來成為半導(dǎo)體產(chǎn)業(yè)的熱門議題。人工智能、車聯(lián)網(wǎng)、5G 等應(yīng)用相繼興起,且皆須使用到高速運(yùn)算、高速傳輸、低延遲、低耗能的先進(jìn)功能芯片;隨著運(yùn)算需求呈倍數(shù)成長(zhǎng),究竟要如何延續(xù)摩爾定律,成為半導(dǎo)體產(chǎn)業(yè)的一大挑戰(zhàn)。

先進(jìn)制程與先進(jìn)封裝成為延續(xù)摩爾定律的關(guān)鍵技術(shù),2.5D、3D 和Chiplets 等技術(shù)在近年來成為半導(dǎo)體產(chǎn)業(yè)的熱門議題。人工智能、車聯(lián)網(wǎng)、5G 等應(yīng)用相繼興起,且皆須使用到高速運(yùn)算、高速傳輸、低延遲、低耗能的先進(jìn)功能芯片;隨著運(yùn)算需求呈倍數(shù)成長(zhǎng),究竟要如何延續(xù)摩爾定律,成為半導(dǎo)體產(chǎn)業(yè)的一大挑戰(zhàn)。

先進(jìn)封裝是如何在延續(xù)摩爾定律上扮演關(guān)鍵角色?而2.5D、3D 和Chiplets 等封裝技術(shù)又有何特點(diǎn)?

一、芯片微縮愈加困難,異構(gòu)整合由此而生

換言之,半導(dǎo)體先進(jìn)制程紛紛邁入了7 納米、5 納米,接著開始朝3 納米和2 納米邁進(jìn),電晶體大小也因此不斷接近原子的物理體積限制,電子及物理的限制也讓先進(jìn)制程的持續(xù)微縮與升級(jí)難度越來越高。

也因此,半導(dǎo)體產(chǎn)業(yè)除了持續(xù)發(fā)展先進(jìn)制程之外,也「山不轉(zhuǎn)路轉(zhuǎn)」地開始找尋其他既能讓芯片維持小體積,同時(shí)又保有高效能的方式;而芯片的布局設(shè)計(jì),遂成為延續(xù)摩爾定律的新解方,異構(gòu)整合(Heterogeneous Integration Design Architecture System,HIDAS)概念便應(yīng)運(yùn)而生,同時(shí)成為IC 芯片的創(chuàng)新動(dòng)能。

所謂的異構(gòu)整合,廣義而言,就是將兩種不同的芯片,例如記憶體+邏輯芯片、光電+電子元件等,透過封裝、3D 堆疊等技術(shù)整合在一起。換句話說,將兩種不同制程、不同性質(zhì)的芯片整合在一起,都可稱為是異構(gòu)整合。

因?yàn)閼?yīng)用市場(chǎng)更加的多元,每項(xiàng)產(chǎn)品的成本、性能和目標(biāo)族群都不同,因此所需的異構(gòu)整合技術(shù)也不盡相同,市場(chǎng)分眾化趨勢(shì)逐漸浮現(xiàn)。為此,IC 代工、制造及半導(dǎo)體設(shè)備業(yè)者紛紛投入異構(gòu)整合發(fā)展,2.5D、3D 封裝、Chiplets 等現(xiàn)今熱門的封裝技術(shù),便是基于異構(gòu)整合的想法,如雨后春筍般浮現(xiàn)。

二、2.5D 封裝有效降低芯片生產(chǎn)成本

過往要將芯片整合在一起,大多使用系統(tǒng)單封裝(System in a Package,SiP)技術(shù),像是PiP(Package in Package)封裝、PoP(Package on Package)封裝等。然而,隨著智能手機(jī)、AIoT 等應(yīng)用,不僅需要更高的性能,還要保持小體積、低功耗,在這樣的情況下,必須想辦法將更多的芯片堆積起來使體積再縮小,因此,目前封裝技術(shù)除了原有的SiP 之外,也紛紛朝向立體封裝技術(shù)發(fā)展。

立體封裝概略來說,意即直接使用硅晶圓制作的「硅中介板」(Silicon interposer),而不使用以往塑膠制作的「導(dǎo)線載板」,將數(shù)個(gè)功能不同的芯片,直接封裝成一個(gè)具更高效能的芯片。換言之,就是朝著芯片疊高的方式,在硅上面不斷疊加硅芯片,改善制程成本及物理限制,讓摩爾定律得以繼續(xù)實(shí)現(xiàn)。

而立體封裝較為人熟知的是2.5D 與3D 封裝,這邊先從2.5D 封裝談起。所謂的2.5D 封裝,主要的概念是將處理器、記憶體或是其他的芯片,并列排在硅中介板(Silicon Interposer)上,先經(jīng)由微凸塊(Micro Bump)連結(jié),讓硅中介板之內(nèi)金屬線可連接不同芯片的電子訊號(hào);接著再透過硅穿孔(TSV)來連結(jié)下方的金屬凸塊(Solder Bump),再經(jīng)由導(dǎo)線載板連結(jié)外部金屬球,實(shí)現(xiàn)芯片、芯片與封裝基板之間更緊密的互連。

2.5D和3D封裝是熱門的立體封裝技術(shù)。(Source:ANSYS)

目前為人所熟知的2.5D 封裝技術(shù),不外乎是臺(tái)積電的CoWoS。CoWoS 技術(shù)概念,簡(jiǎn)單來說是先將半導(dǎo)體芯片(像是處理器、記憶體等),一同放在硅中介層上,再透過Chip on Wafer(CoW)的封裝制程連接至底層基板上。換言之,也就是先將芯片通過Chip on Wafer(CoW)的封裝制程連接至硅晶圓,再把CoW 芯片與基板連接,整合成CoWoS;利用這種封裝模式,使得多顆芯片可以封裝到一起,透過Si Interposer 互聯(lián),達(dá)到了封裝體積小,功耗低,引腳少的效果。

臺(tái)積電CoWos封裝技術(shù)概念。(Source:臺(tái)積電)

除了CoWos 外,扇出型晶圓級(jí)封裝也可歸為2.5D 封裝的一種方式。扇出型晶圓級(jí)封裝技術(shù)的原理,是從半導(dǎo)體裸晶的端點(diǎn)上,拉出需要的電路至重分布層(Redistribution Layer),進(jìn)而形成封裝。因此不需封裝載板,不用打線(Wire)、凸塊(Bump),能夠降低30% 的生產(chǎn)成本,也讓芯片更薄。同時(shí)也讓芯片面積減少許多,也可取代成本較高的直通硅晶穿孔,達(dá)到透過封裝技術(shù)整合不同元件功能的目標(biāo)。

當(dāng)然,立體封裝技術(shù)不只有2.5D,還有3D 封裝。那么,兩者之間的差別究竟為何,而3D 封裝又有半導(dǎo)體業(yè)者正在采用?

相較于2.5D 封裝,3D 封裝的原理是在芯片制作電晶體(CMOS)結(jié)構(gòu),并且直接使用硅穿孔來連結(jié)上下不同芯片的電子訊號(hào),以直接將記憶體或其他芯片垂直堆疊在上面。此項(xiàng)封裝最大的技術(shù)挑戰(zhàn)便是,要在芯片內(nèi)直接制作硅穿孔困難度極高,不過,由于高效能運(yùn)算、人工智能等應(yīng)用興起,加上TSV 技術(shù)愈來愈成熟,可以看到越來越多的CPU、GPU 和記憶體開始采用3D 封裝。

3D封裝是直接將芯片堆疊起來。(Source:英特爾)

三、臺(tái)積電、英特爾積極發(fā)展3D 封裝技術(shù)

在3D 封裝上,英特爾(Intel)和臺(tái)積電都有各自的技術(shù)。英特爾采用的是「Foveros」的3D 封裝技術(shù),使用異構(gòu)堆疊邏輯處理運(yùn)算,可以把各個(gè)邏輯芯片堆棧一起。也就是說,首度把芯片堆疊從傳統(tǒng)的被動(dòng)硅中介層與堆疊記憶體,擴(kuò)展到高效能邏輯產(chǎn)品,如CPU、繪圖與AI 處理器等。以往堆疊僅用于記憶體,現(xiàn)在采用異構(gòu)堆疊于堆疊以往僅用于記憶體,現(xiàn)在采用異構(gòu)堆疊,讓記憶體及運(yùn)算芯片能以不同組合堆疊。

另外,英特爾還研發(fā)3 項(xiàng)全新技術(shù),分別為Co-EMIB、ODI 和MDIO。Co-EMIB 能連接更高的運(yùn)算性能和能力,并能夠讓兩個(gè)或多個(gè)Foveros 元件互連,設(shè)計(jì)人員還能夠以非常高的頻寬和非常低的功耗連接模擬器、記憶體和其他模組。ODI 技術(shù)則為封裝中小芯片之間的全方位互連通訊提供了更大的靈活性。頂部芯片可以像EMIB 技術(shù)一樣與其他小芯片進(jìn)行通訊,同時(shí)還可以像Foveros 技術(shù)一樣,通過硅通孔(TSV)與下面的底部裸片進(jìn)行垂直通訊。

英特爾Foveros技術(shù)概念。(Source:英特爾)

同時(shí),該技術(shù)還利用大的垂直通孔直接從封裝基板向頂部裸片供電,這種大通孔比傳統(tǒng)的硅通孔大得多,其電阻更低,因而可提供更穩(wěn)定的電力傳輸;并透過堆疊實(shí)現(xiàn)更高頻寬和更低延遲。此一方法減少基底芯片中所需的硅通孔數(shù)量,為主動(dòng)元件釋放了更多的面積,優(yōu)化裸片尺寸。

而臺(tái)積電,則是提出「3D 多芯片與系統(tǒng)整合芯片」(SoIC)的整合方案。此項(xiàng)系統(tǒng)整合芯片解決方案將不同尺寸、制程技術(shù),以及材料的已知良好裸晶直接堆疊在一起。

臺(tái)積電提到,相較于傳統(tǒng)使用微凸塊的3D 積體電路解決方案,此一系統(tǒng)整合芯片的凸塊密度與速度高出數(shù)倍,同時(shí)大幅減少功耗。此外,系統(tǒng)整合芯片是前段制程整合解決方案,在封裝之前連結(jié)兩個(gè)或更多的裸晶;因此,系統(tǒng)整合芯片組能夠利用該公司的InFO 或CoWoS 的后端先進(jìn)封裝技術(shù)來進(jìn)一步整合其他芯片,打造一個(gè)強(qiáng)大的「3D×3D」系統(tǒng)級(jí)解決方案。

此外,臺(tái)積電亦推出3DFabric,將快速成長(zhǎng)的3DIC 系統(tǒng)整合解決方案統(tǒng)合起來,提供更好的靈活性,透過穩(wěn)固的芯片互連打造出強(qiáng)大的系統(tǒng)。藉由不同的選項(xiàng)進(jìn)行前段芯片堆疊與后段封裝,3DFabric 協(xié)助客戶將多個(gè)邏輯芯片連結(jié)在一起,甚至串聯(lián)高頻寬記憶體(HBM)或異構(gòu)小芯片,例如類比、輸入/輸出,以及射頻模組。3DFabric 能夠結(jié)合后段3D 與前段3D 技術(shù)的解決方案,并能與電晶體微縮互補(bǔ),持續(xù)提升系統(tǒng)效能與功能性,縮小尺寸外觀,并且加快產(chǎn)品上市時(shí)程。

在介紹完2.5D 和3D 之后,近來還有Chiplets 也是半導(dǎo)體產(chǎn)業(yè)熱門的先進(jìn)封裝技術(shù)之一;最后,就來簡(jiǎn)單說明Chiplets 的特性和優(yōu)勢(shì)。

除了2.5D 和3D 封裝之外,Chiplets 也是備受關(guān)注的技術(shù)之一。由于電子終端產(chǎn)品朝向高整合趨勢(shì)發(fā)展,對(duì)于高效能芯片需求持續(xù)增加,但隨著摩爾定律逐漸趨緩,在持續(xù)提升產(chǎn)品性能過程中,如果為了整合新功能芯片模組而增大芯片面積,將會(huì)面臨成本提高和低良率問題。因此,Chiplets 成為半導(dǎo)體產(chǎn)業(yè)因摩爾定律面臨瓶頸所衍生的技術(shù)替代方案。

四、Chiplets就像拼圖一樣,把小芯片組成大芯片

Chiplets 的概念最早源于1970 年代誕生的多芯片模組,其原理大致而言,即是由多個(gè)同質(zhì)、異構(gòu)等較小的芯片組成大芯片,也就是從原來設(shè)計(jì)在同一個(gè)SoC 中的芯片,被分拆成許多不同的小芯片分開制造再加以封裝或組裝,故稱此分拆之芯片為小芯片Chiplets。

由于先進(jìn)制程成本急速上升,不同于SoC 設(shè)計(jì)方式,將大尺寸的多核心的設(shè)計(jì),分散到較小的小芯片,更能滿足現(xiàn)今的高效能運(yùn)算處理器需求;而彈性的設(shè)計(jì)方式不僅提升靈活性,也能有更好的良率及節(jié)省成本優(yōu)勢(shì),并減少芯片設(shè)計(jì)時(shí)程,加速芯片Time to market 時(shí)間。

使用Chiplets 有三大好處。因?yàn)橄冗M(jìn)制程成本非常高昂,特別是模擬電路、I/O 等愈來愈難以隨著制程技術(shù)縮小,而Chiplets 是將電路分割成獨(dú)立的小芯片,并各自強(qiáng)化功能、制程技術(shù)及尺寸,最后整合在一起,以克服制程難以微縮的挑戰(zhàn)。此外,基于Chiplets 還可以使用現(xiàn)有的成熟芯片降低開發(fā)和驗(yàn)證成本。

目前已有許多半導(dǎo)體業(yè)者采用Chiplets 方式推出高效能產(chǎn)品。像是英特爾的Intel Stratix 10 GX 10M FPGA 便是采用Chiplets 設(shè)計(jì),以達(dá)到更高的元件密度和容量。該產(chǎn)品是以現(xiàn)有的Intel Stratix 10 FPGA 架構(gòu)及英特爾先進(jìn)的嵌入式多芯片互連橋接(EMIB)技術(shù)為基礎(chǔ),運(yùn)用了EMIB 技術(shù)融合兩個(gè)高密度Intel Stratix 10 GX FPGA 核心邏輯芯片以及相應(yīng)的I /O 單元。至于AMD 第二代EPYC 系列處理器也是如此。有別于第一代將Memory 與I/O 結(jié)合成14 納米CPU 的Chiplet 方式,第二代是把I/O 與Memory 獨(dú)立成一個(gè)芯片,并將7 納米CPU 切成8 個(gè)Chiplets 進(jìn)行組合。

過去的芯片效能都仰賴半導(dǎo)體制程的改進(jìn)而提升,但隨著元件尺寸越來越接近物理極限,芯片微縮難度越來越高,要保持小體積、高效能的芯片設(shè)計(jì),半導(dǎo)體產(chǎn)業(yè)不僅持續(xù)發(fā)展先進(jìn)制程,同時(shí)也朝芯片架構(gòu)著手改進(jìn),讓芯片從原先的單層,轉(zhuǎn)向多層堆疊。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉