熱拔插系統(tǒng)中的電源緩啟動(dòng)設(shè)計(jì)
通常來說電路板上使用過多的大容量電容對(duì)于濾除高頻干擾并沒有什么幫助,特別是使用高頻開關(guān)電源供電時(shí)。另一個(gè)問題是,大容量電容過多,增加了上電及熱插拔電路板時(shí)對(duì)電源的沖擊,容易引起如電源電壓下跌、電路板接插件打火、電路板內(nèi)電壓上升慢等問題。
1、熱拔插系統(tǒng)必須使用電源緩啟動(dòng)設(shè)計(jì)
熱拔插系統(tǒng)在單板插入瞬間,單板上的電容開始充電。因?yàn)殡娙輧啥说碾妷翰荒芡蛔?,?huì)導(dǎo)致整個(gè)系統(tǒng)的電壓瞬間跌落。同時(shí)因?yàn)殡娫醋杩购艿?,充電電流?huì)非常大,快速的充電會(huì)對(duì)系統(tǒng)中的電容產(chǎn)生沖擊,易導(dǎo)致鉭電容失效。如果系統(tǒng)中采用保險(xiǎn)絲進(jìn)行過流保護(hù), 瞬態(tài)電流有可能導(dǎo)致保險(xiǎn)絲熔斷, 而選擇大電流的保險(xiǎn)絲會(huì)使得在系統(tǒng)電流異常時(shí)可能不熔斷,起不到保護(hù)作用。所以,在熱拔插系統(tǒng)中電源必須采用緩啟動(dòng)設(shè)計(jì),限制啟動(dòng)電流,避免瞬態(tài)電流過大對(duì)系統(tǒng)工作和器件可靠性產(chǎn)生影響。
LDO
1、在壓差較大或者電流較大的降壓電源設(shè)計(jì)中,建議采用開關(guān)電源,避免使用 LDO
采用線性電源(包括 LDO)可以得到較低的噪聲,而且因?yàn)槭褂煤?jiǎn)單,成本低,所以在單板上應(yīng)用較多。FPGA 內(nèi)核電源、某些電路板上射頻時(shí)鐘部分的電源等都使用線性電源從更高電壓的電源上調(diào)整得到。LDO必須計(jì)算熱耗并滿足降額規(guī)范
2、LDO 輸出端濾波電容選取時(shí)注意參照手冊(cè)要求的最小電容、電容的 ESR/ESL 等要求確保電路穩(wěn)定。推薦采用多個(gè)等值電容并聯(lián)的方式,增加可靠性以及提高性能
LDO 輸出電容為負(fù)載的變化提供瞬態(tài)電流,同時(shí)因?yàn)檩敵鲭娙萏幱陔妷悍答佌{(diào)節(jié)回路之中,在部分 LDO 中,對(duì)該電容容量有要求以確保調(diào)節(jié)環(huán)路穩(wěn)定。該電容容量不滿足要求,LDO 可能發(fā)生振蕩導(dǎo)致輸出電壓存在較大紋波。
多個(gè)電容并聯(lián),以及對(duì)大容量電解電容并聯(lián)小容量的陶瓷電容,有利于減少 ESR 和 ESL,提高電路的高頻性能,但是對(duì)于某些線性穩(wěn)壓電源,輸出端電容的 ESR 太低,也可能會(huì)誘發(fā)環(huán)路穩(wěn)定裕量下降甚至環(huán)路不穩(wěn)定。
濾波電容
1、 電源濾波可采用 RC 、LC 、π 型濾波。電源濾波建議優(yōu)選磁珠,然后才是電感。同時(shí)電阻、電感和磁珠必須考慮其電阻產(chǎn)生的壓降
插:電感和磁珠比較
2、 大容量電容應(yīng)并聯(lián)小容量陶瓷貼片電容使用
大容量電容一般為電解電容,其體積較大,引腳較長(zhǎng),經(jīng)常為卷繞式結(jié)構(gòu)(鉭電容為燒結(jié)的碳粉和二氧化錳) 。這些電容的等效串聯(lián)電感較大,導(dǎo)致這些電容的高頻特性較差,諧振頻率大約在幾百 KHz到幾 MHz 之間(參見 Sanyo 公司 OSCON 器件手冊(cè)和 AVX 公司鉭電容器件手冊(cè)) 。小容量的陶瓷貼片電容具有低的 ESL 和良好的頻率特性,其諧振點(diǎn)一般能夠到達(dá)數(shù)十至數(shù)百 MHz(參見參考文獻(xiàn)《High-speed Digital Design》以及 AVX 等公司陶瓷電容器件手冊(cè)) ,可以用于給高頻信號(hào)提供低阻抗的回流路徑,濾除信號(hào)上的高頻干擾成分。因此,在應(yīng)用大容量電容(電解電容)時(shí),應(yīng)在電容上并聯(lián)小容量瓷片電容使用。
大容量電容一般為電解電容,其體積較大,引腳較長(zhǎng),經(jīng)常為卷繞式結(jié)構(gòu)(鉭電容為燒結(jié)的碳粉和二氧化錳) 。這些電容的等效串聯(lián)電感較大,導(dǎo)致這些電容的高頻特性較差,諧振頻率大約在幾百 KHz到幾 MHz 之間(參見 Sanyo 公司 OSCON 器件手冊(cè)和 AVX 公司鉭電容器件手冊(cè)) 。小容量的陶瓷貼片電容具有低的 ESL 和良好的頻率特性,其諧振點(diǎn)一般能夠到達(dá)數(shù)十至數(shù)百 MHz(參見參考文獻(xiàn)《High-speed Digital Design》以及 AVX 等公司陶瓷電容器件手冊(cè)) ,可以用于給高頻信號(hào)提供低阻抗的回流路徑,濾除信號(hào)上的高頻干擾成分。因此,在應(yīng)用大容量電容(電解電容)時(shí),應(yīng)在電容上并聯(lián)小容量瓷片電容使用。
尖峰電流的抑制方法:
1、在電路板布線上采取措施,使信號(hào)線的雜散電容降到最小;
2、 另一種方法是設(shè)法降低供電電源的內(nèi)阻,使尖峰電流不至于引起過大的電源電壓波動(dòng);
3、 通常的作法是使用去耦電容來濾波,一般是在電路板的電源入口處放
一個(gè)1uF~10uF的去耦電容,濾除低頻噪聲;在電路板內(nèi)的每一個(gè)有源器件的電源和地之間放置一個(gè)0.01uF~0.1uF的去耦電容(高頻濾波電容),用于濾除高頻噪聲。濾波的目的是要濾除疊加在電源上的交流干擾,但并不是使用的電容容量越大越好,因?yàn)閷?shí)際的電容并不是理想電容,不具備理想電容的所有特性。
去耦電容的選取可按C=1/F計(jì)算,其中F為電路頻率,即10MHz取0.1uF,100MHz取0.01uF。一般取0.1~0.01uF均可。
放置在有源器件傍的高頻濾波電容的作用有兩個(gè),其一是濾除沿電源傳導(dǎo)過來的高頻干擾,其二是及時(shí)補(bǔ)充器件高速工作時(shí)所需的尖峰電流。所以電容的放置位置是需要考慮的。
實(shí)際的電容由于存在寄生參數(shù),可等效為串聯(lián)在電容上的電阻和電感,將其稱為等效串聯(lián)電阻(ESR)和等效串聯(lián)電感(ESL)。這樣,實(shí)際的電容就是一個(gè)串聯(lián)諧振電路,其諧振頻率為:
實(shí)際的電容在低于Fr的頻率呈現(xiàn)容性,而在高于Fr的頻率上則呈現(xiàn)感性,所以電容更象是一個(gè)帶阻濾波器。
10uF的電解電容由于其ESL較大,F(xiàn)r小于1MHz,對(duì)于50Hz這樣的低頻噪聲有較好的濾波效果,對(duì)上百兆的高頻開關(guān)噪聲則沒有什么作用。
電容的ESR和ESL是由電容的結(jié)構(gòu)和所用的介質(zhì)決定的,而不是電容量。通過使用更大容量的電容并不能提高抑制高頻干擾的能力,同類型的電容,在低于Fr的頻率下,大容量的比小容量的阻抗小,但如果頻率高于Fr,ESL決定了兩者的阻抗不會(huì)有什么區(qū)別。
電路板上使用過多的大容量電容對(duì)于濾除高頻干擾并沒有什么幫助,特別是使用高頻開關(guān)電源供電時(shí)。另一個(gè)問題是,大容量電容過多,增加了上電及熱插拔電路板時(shí)對(duì)電源的沖擊,容易引起如電源電壓下跌、電路板接插件打火、電路板內(nèi)電壓上升慢等問題。
1.電感和磁珠的對(duì)比
電感和磁珠在外形和功能上有很多相似之處,而且在很多場(chǎng)合,磁珠和電感能相互替代,但是兩者并不能完全等同。
兩者的區(qū)別:
(1)電感和磁珠雖然都可以濾波,但是機(jī)理是不一樣的。電感濾波是將電能轉(zhuǎn)換為磁能,磁能通過兩種方式影響電路:一種方式是重新?lián)Q回電能,表現(xiàn)為噪聲;一種方式是向外輻射,表現(xiàn)為EMI(Electro-Magnetic Interference)電磁干擾。而磁珠是講電能轉(zhuǎn)換為熱能,不會(huì)對(duì)電路產(chǎn)生二次干擾。
(2)電感在低頻段濾波性能較好,但是在50MHz以上的濾波性能較差;磁珠利用其電阻能充分地吸收高頻噪聲,并將之轉(zhuǎn)換為熱能以達(dá)到徹底消除高頻噪聲的目的。
(3)從EMC(Electro Magnetic Compatibility)電磁兼容的層面說,由于磁珠能將高頻噪聲轉(zhuǎn)換為熱能,因此具有非常好的抗輻射功能,是常用的抗EMI器件,常應(yīng)用于用戶接口信號(hào)線濾波、單板上的高速時(shí)鐘器件的電源濾波等。
(4)電感和電容構(gòu)成低通濾波器時(shí),由于電感和電容都是儲(chǔ)能器件,因此兩者的配合可能產(chǎn)生自激;磁珠是耗能器件,與電容協(xié)同工作時(shí),不會(huì)產(chǎn)生自激。
(5)電源用電感的額定電流相對(duì)較大,因此,電感常用于需要大電流的 電源電路上,如用于電源模塊濾波;而磁珠一般常用于芯片級(jí)電源濾波