應(yīng)該如何提高反激式電源的交叉調(diào)整率
在現(xiàn)實情況中,寄生元件會共同降低未調(diào)節(jié)輸出的負載調(diào)整。我將進一步探討寄生電感的影響,以及如何使用同步整流代替二極管來大幅提高反激式電源的交叉調(diào)整率。
例如,一個反激式電源可分別從一個 48V 輸入產(chǎn)生兩個 1 A 的 12V 輸出,如圖 1 的簡化仿真模型所示。理想的二極管模型具有零正向壓降,電阻可忽略不計。變壓器繞組電阻可忽略不計,只有與變壓器引線串聯(lián)的寄生電感才能建模。這些電感是變壓器內(nèi)的漏電感,以及印刷電路板(PCB)印制線和二極管內(nèi)的寄生電感。當(dāng)設(shè)置這些電感時,兩個輸出相互跟蹤,因為當(dāng)二極管在開關(guān)周期的 1-D 部分導(dǎo)通時,變壓器的全耦合會促使兩個輸出相等。
圖 1 該反激式簡化模型模擬了漏電感對輸出電壓調(diào)節(jié)的影響
現(xiàn)在考慮一下,當(dāng)您將 100 nH 的漏電感引入變壓器的兩根二次引線,并且將 3μH 的漏電與初級繞組串聯(lián)時,將會發(fā)生什么。這些電感可在電流路徑中建立寄生電感,其中包括變壓器內(nèi)部的漏電感以及 PCB 和其他元件中的電感。當(dāng)初始場效應(yīng)晶體管(FET)關(guān)斷時,初始漏電感仍然有電流流動,而次級漏電感開啟初始條件為 0 A 的 1-D 周期。變壓器磁芯上出現(xiàn)基座電壓,所有繞組共用。該基座電壓使初級漏電中的電流斜降至 0 A,并使次級漏電電流斜升以將電流傳輸?shù)截撦d。當(dāng)兩個重載輸出時,電流在整個 1-D 周期持續(xù)流動,輸出電壓平衡良好,如圖 2 所示。然而,當(dāng)一個重載輸出和另一個輕載輸出時,輕載輸出上的輸出電容傾向于從該基座電壓發(fā)生峰值充電;因為電流迅速回升到零,其輸出二極管將停止導(dǎo)通。請參見圖 3 中的波形。這些寄生電感的峰值充電交叉調(diào)節(jié)影響通常比整流器正向壓降單獨引起的要差得多。
圖 2 輸出施加重載時,次級繞組電流在兩個次級繞組中流動
圖 3 重載次級 1 和輕載次級 2,基座電壓對次級 2 的輸出電容器進行峰值充電
無論負載如何,同步整流器有助于通過在整個 1-D 周期內(nèi)強制電流流入兩個繞組來減輕此問題。
圖 4 顯示了具有與圖 3 相同負載條件的波形,但用理想的同步整流器代替了理想的二極管。由于同步整流器在基座電壓降低后保持良好狀態(tài),因此即使出現(xiàn)嚴重不平衡的負載,兩個輸出電壓也能很好地相互跟蹤。
雖然次級 2 的平均電流非常小,但均方根(RMS)含量仍然可以相當(dāng)高。這是因為,與圖 3 中的理想二極管不同,同步整流器在整個 1-D 周期期間可強制連續(xù)電流流動。有趣的是,電流在這一周期的大部分時間內(nèi)必須是負的,以保證低平均電流。
顯然,您犧牲更佳的調(diào)節(jié)以實現(xiàn)更高的循環(huán)電流。然而,這并不一定意味著總損耗會更高。同步整流器的正向壓降通常遠低于二極管,因此同步整流器在較高負載下的效率通常要好得多。