對于電子專業(yè)的朋友來說,pwm早已耳熟能詳。pwm技術的發(fā)展極大程度上推動了社會的進步。上篇文章中,小編對pwm的3種調制方式有所介紹。本文中,小編將對其余5種pwm調制方式進行講解。如果你對pwm具有興趣,不妨繼續(xù)往下閱讀哦。
一、空間電壓矢量控制PWM
空間電壓矢量控制PWM(SVPWM)也叫磁通正弦PWM法。它以三相波形整體生成效果為前提,以逼近電機氣隙的理想圓形旋轉磁場軌跡為目的,用逆變器不同的開關模式所產生的實際磁通去逼近基準圓磁通,由它們的比較結果決定逆變器的開關,形成PWM波形。此法從電動機的角度出發(fā),把逆變器和電機看作一個整體,以內切多邊形逼近圓的方式進行控制,使電機獲得幅值恒定的圓形磁場(正弦磁通)。具體方法又分為磁通開環(huán)式和磁通閉環(huán)式。磁通開環(huán)法用兩個非零矢量和一個零矢量合成一個等效的電壓矢量,若采樣時間足夠小,可合成任意電壓矢量。此法輸出電壓比正弦波調制時提高15%,諧波電流有效值之和接近最小。磁通閉環(huán)式引入磁通反饋,控制磁通的大小和變化的速度。在比較估算磁通和給定磁通后,根據(jù)誤差決定產生下一個電壓矢量,形成PWM波形。這種方法克服了磁通開環(huán)法的不足,解決了電機低速時,定子電阻影響大的問題,減小了電機的脈動和噪音。但由于未引入轉矩的調節(jié),系統(tǒng)性能沒有得到根本性的改善。
二、矢量控制PWM
矢量控制也稱磁場定向控制,其原理是將異步電動機在三相坐標系下的定子電流Ia,Ib及Ic,通過三相/二相變換,等效成兩相靜止坐標系下的交流電流Ia1及Ib1,再通過按轉子磁場定向旋轉變換,等效成同步旋轉坐標系下的直流電流Im1及It1(Im1相當于直流電動機的勵磁電流;It1相當于與轉矩成正比的電樞電流),然后模仿對直流電動機的控制方法,實現(xiàn)對交流電動機的控制。其實質是將交流電動機等效為直流電動機,分別對速度、磁場兩個分量進行獨立控制。通過控制轉子磁鏈,然后分解定子電流而獲得轉矩和磁場兩個分量,經坐標變換,實現(xiàn)正交或解耦控制。
但是,由于轉子磁鏈難以準確觀測,以及矢量變換的復雜性,使得實際控制效果往往難以達到理論分析的效果,這是矢量控制技術在實踐上的不足。此外.它必須直接或間接地得到轉子磁鏈在空間上的位置才能實現(xiàn)定子電流解耦控制,在這種矢量控制系統(tǒng)中需要配置轉子位置或速度傳感器,這顯然給許多應用場合帶來不便。
三、直接轉矩控制PWM
1985年德國魯爾大學Depenbrock教授首先提出直接轉矩控制理論(DirectTorqueControl簡稱DTC)。直接轉矩控制與矢量控制不同,它不是通過控制電流、磁鏈等量來間接控制轉矩,而是把轉矩直接作為被控量來控制,它也不需要解耦電機模型,而是在靜止的坐標系中計算電機磁通和轉矩的實際值,然后,經磁鏈和轉矩的Band-Band控制產生PWM信號對逆變器的開關狀態(tài)進行最佳控制,從而在很大程度上解決了上述矢量控制的不足,能方便地實現(xiàn)無速度傳感器化,有很快的轉矩響應速度和很高的速度及轉矩控制精度,并以新穎的控制思想、簡潔明了的系統(tǒng)結構、優(yōu)良的動靜態(tài)性能得到了迅速發(fā)展。
四、非線性控制PWM
單周控制法又稱積分復位控制(IntegraTIonResetControl,簡稱IRC),是一種新型非線性控制技術,其基本思想是控制開關占空比,在每個周期使開關變量的平均值與控制參考電壓相等或成一定比例。該技術同時具有調制和控制的雙重性,通過復位開關、積分器、觸發(fā)電路、比較器達到跟蹤指令信號的目的。單周控制器由控制器、比較器、積分器及時鐘組成,其中控制器可以是RS觸發(fā)器,其控制原理如圖1所示。圖中K可以是任何物理開關,也可是其它可轉化為開關變量形式的抽象信號。
單周控制在控制電路中不需要誤差綜合,它能在一個周期內自動消除穩(wěn)態(tài)、瞬態(tài)誤差,使前一周期的誤差不會帶到下一周期。雖然硬件電路較復雜,但其克服了傳統(tǒng)的PWM控制方法的不足,適用于各種脈寬調制軟開關逆變器,具有反應快、開關頻率恒定、魯棒性強等優(yōu)點,此外,單周控制還能優(yōu)化系統(tǒng)響應、減小畸變和抑制電源干擾,是一種很有前途的控制方法。
五、諧振軟開關PWM
傳統(tǒng)的PWM逆變電路中,電力電子開關器件硬開關的工作方式,大的開關電壓電流應力以及高的du/dt和di/dt限制了開關器件工作頻率的提高,而高頻化是電力電子主要發(fā)展趨勢之一,它能使變換器體積減小、重量減輕、成本下降、性能提高,特別當開關頻率在18kHz以上時,噪聲將已超過人類聽覺范圍,使無噪聲傳動系統(tǒng)成為可能。
諧振軟開關PWM的基本思想是在常規(guī)PWM變換器拓撲的基礎上,附加一個諧振網絡,諧振網絡一般由諧振電感、諧振電容和功率開關組成。開關轉換時,諧振網絡工作使電力電子器件在開關點上實現(xiàn)軟開關過程,諧振過程極短,基本不影響PWM技術的實現(xiàn)。從而既保持了PWM技術的特點,又實現(xiàn)了軟開關技術。但由于諧振網絡在電路中的存在必然會產生諧振損耗,并使電路受固有問題的影響,從而限制了該方法的應用。
以上便是此次小編帶來的“pwm”相關內容,通過本文,希望大家對上述提及的5種pwm調制方式具備一定的了解。如果你喜歡本文,不妨持續(xù)關注我們網站哦,小編將于后期帶來更多精彩內容。