當(dāng)前位置:首頁(yè) > 公眾號(hào)精選 > 架構(gòu)師社區(qū)
[導(dǎo)讀]Kafka 是一個(gè) 分布式的基于 發(fā)布/訂閱模式的消息隊(duì)列,依靠其強(qiáng)悍的吞吐量,Kafka 主要應(yīng)用于大數(shù)據(jù)實(shí)時(shí)處理領(lǐng)域。

1 Kafka 簡(jiǎn)介

1.1 Kafka 概述

六問(wèn) Kafka 為啥那么牛!

Kafka架構(gòu)

Kafka 是一個(gè) 分布式的基于 發(fā)布/訂閱模式的消息隊(duì)列,依靠其強(qiáng)悍的吞吐量,Kafka 主要應(yīng)用于大數(shù)據(jù)實(shí)時(shí)處理領(lǐng)域。在數(shù)據(jù)采集、傳輸、存儲(chǔ)的過(guò)程中發(fā)揮著舉足輕重的作用。

  1. Apache Kafka 由 Scala 寫成,是由Apache軟件基金會(huì)開發(fā)的一個(gè)開源消息系統(tǒng)項(xiàng)目。該項(xiàng)目的目標(biāo)是為處理實(shí)時(shí)數(shù)據(jù)提供一個(gè)統(tǒng)一、高通量、低等待的平臺(tái)。

  2. Kafka 是一個(gè)分布式消息隊(duì)列,Kafka 對(duì)消息保存時(shí)根據(jù) Topic 進(jìn)行歸類,Kafka 集群有多個(gè) Kafka實(shí)例組成,每個(gè)實(shí)例 Server 稱為 broker。

  3. 無(wú)論是 Kafka 集群還是 Consumer 都依賴于 ZooKeeper 集群保存一些 meta 信息,來(lái)保證系統(tǒng)可用性

1.2 Kafka 優(yōu)點(diǎn)

  1. 支持多個(gè)生產(chǎn)者和消費(fèi)者

  2. 支持broker的橫向拓展。

  3. 副本集機(jī)制,實(shí)現(xiàn)數(shù)據(jù)冗余,保證數(shù)據(jù)不丟失。

  4. 通過(guò) topic 將數(shù)據(jù)進(jìn)行分類。

  5. 通過(guò)分批發(fā)送壓縮數(shù)據(jù)的方式,減少數(shù)據(jù)傳輸開銷,提高吞高量

  6. 支持多種模式的消息,消息是基于磁盤實(shí)現(xiàn)數(shù)據(jù)的持久化。

  7. 高性能的處理信息,在大數(shù)據(jù)的情況下,可以保證亞秒級(jí)的消息延遲

  8. 一個(gè)消費(fèi)者可以支持多種 topic 的消息。

  9. 對(duì)CPU、內(nèi)存、網(wǎng)絡(luò)的消耗比較小。

  10. 支持跨數(shù)據(jù)中心的數(shù)據(jù)復(fù)制跟鏡像集群

1.3 Kafka 缺點(diǎn)

  1. 由于是批量發(fā)送,所以數(shù)據(jù)達(dá)不到真正的實(shí)時(shí)。

  2. 只能支持統(tǒng)一分區(qū)內(nèi)消息有序,無(wú)法實(shí)現(xiàn)全局消息有序。

  3. 監(jiān)控不完善,需要安裝插件

  4. 會(huì)丟失數(shù)據(jù),并且不支持事務(wù)。

  5. 可能會(huì)重復(fù)消費(fèi)數(shù)據(jù),消息會(huì)亂序,可用保證一個(gè)固定的partition內(nèi)部的消息是有序的,但是一個(gè)topic有多個(gè)partition的話,就不能保證有序了,需要zookeeper的支持,topic一般需要人工創(chuàng)建,部署和維護(hù)一般都比mq高。

1.4 Kafka 架構(gòu)

六問(wèn) Kafka 為啥那么牛!

  1. Broker:一臺(tái) kafka 服務(wù)器就是一個(gè)broker。一個(gè)集群由多個(gè)broker組成。一個(gè)broker可以容納多個(gè)topic。

  2. Producer :消息生產(chǎn)者,就是向 Kafka broker 發(fā)消息的客戶端。

  3. Consumer :消息消費(fèi)者,向 Kafka broker 拉取消息來(lái)消費(fèi)。可以根據(jù) Consumer 的消費(fèi)能力以適當(dāng)?shù)乃俾氏M(fèi)消息。

  4. Topic :可以理解為一個(gè)隊(duì)列,生產(chǎn)者和消費(fèi)者面向的都是一個(gè)topic。

  5. Partition:為了實(shí)現(xiàn)擴(kuò)展性,一個(gè)非常大的 topic 可以分布到多個(gè)broker上,一個(gè) topic 可以分為多個(gè)partition,每個(gè) partition 是一個(gè)有序的隊(duì)列,有點(diǎn)平衡分?jǐn)偵a(chǎn)者機(jī)制。

  6. Replication:為保證集群中的某個(gè)節(jié)點(diǎn)發(fā)生故障時(shí),該節(jié)點(diǎn)上的partition數(shù)據(jù)不丟失,且kafka仍然能夠繼續(xù)工作,kafka提供了副本機(jī)制,一個(gè)topic的每個(gè)分區(qū)都有若干個(gè)副本,一個(gè)leader和若干個(gè)follower。

  7. leader:一個(gè)分區(qū)有一個(gè)Leader,生產(chǎn)者發(fā)送數(shù)據(jù)的對(duì)象,以及消費(fèi)者消費(fèi)數(shù)據(jù)的對(duì)象都是leader。

  8. follower:一個(gè)分區(qū)有一個(gè)Follower,實(shí)時(shí)從 leader 中同步數(shù)據(jù),保持和 leader 數(shù)據(jù)的同步。leader 發(fā)生故障時(shí),某個(gè) follower 會(huì)成為新的 follower。注意Kafka中 副本數(shù)不能超過(guò)Broker數(shù)!

  9. Consumer Group :消費(fèi)者組由多個(gè) consumer 組成。組內(nèi)每個(gè)消費(fèi)者負(fù)責(zé)消費(fèi)不同分區(qū)的數(shù)據(jù),一個(gè)分區(qū)只能由一個(gè)組內(nèi)消費(fèi)者消費(fèi);消費(fèi)者組之間互不影響。所有的消費(fèi)者都屬于某個(gè)消費(fèi)者組,即消費(fèi)者組是邏輯上的一個(gè)訂閱者。

  10. offset:消費(fèi)者在具體消費(fèi)某個(gè) topic 中的消息時(shí),可以指定起始偏移量。

1.5 ZooKeeper 作用

ZooKeeper 在 Kafka 中有舉足輕重的地位,一般提供如下功能:

1.5.1 Broker 注冊(cè)

Broker 是分布式部署并且相互之間相互獨(dú)立,但是需要有一個(gè)注冊(cè)系統(tǒng)能夠?qū)⒄麄€(gè)集群中的Broker管理起來(lái),比如用ZooKeeper。

1.5.2 Topic注冊(cè)

在 Kafka 中同一個(gè) Topic 的消息會(huì)被分成多個(gè) Partition 并將其分布在多個(gè) Broker 上,這些 Partition 信息及與 Broker 的對(duì)應(yīng)關(guān)系也都是由 Zookeeper 在維護(hù),由專門的節(jié)點(diǎn)來(lái)記錄。

1.5.3 生產(chǎn)者負(fù)載均衡

同一個(gè)Topic消息會(huì)被分區(qū)并將其分布在多個(gè)Broker上,因此,生產(chǎn)者需要將消息合理地發(fā)送到這些分布式的Broker上。

  1. 老式的四層負(fù)載均衡,根據(jù)生產(chǎn)者的IP地址和端口來(lái)為其確定一個(gè)相關(guān)聯(lián)的Broker。一般一個(gè)生產(chǎn)者只會(huì)對(duì)應(yīng)單個(gè)Broker,但實(shí)際系統(tǒng)中的每個(gè)生產(chǎn)者產(chǎn)生的消息量及每個(gè)Broker的消息存儲(chǔ)量都是不一樣的。

  2. 使用 Zookeeper 進(jìn)行負(fù)載均衡,由于每個(gè)Broker啟動(dòng)時(shí),都會(huì)完成Broker注冊(cè)過(guò)程,生產(chǎn)者會(huì)通過(guò)該節(jié)點(diǎn)的變化來(lái)動(dòng)態(tài)地感知到Broker服務(wù)器列表的變更,這樣就可以實(shí)現(xiàn)動(dòng)態(tài)的負(fù)載均衡機(jī)制。

1.5.4 消費(fèi)者負(fù)載均衡

Kafka 中的消費(fèi)者同樣需要進(jìn)行負(fù)載均衡來(lái)實(shí)現(xiàn)多個(gè)消費(fèi)者合理地從對(duì)應(yīng)的 Broker 服務(wù)器上接收消息,每個(gè)消費(fèi)者分組包含若干消費(fèi)者,每條消息都只會(huì)發(fā)送給分組中的一個(gè)消費(fèi)者,不同的消費(fèi)者分組消費(fèi)自己特定的Topic下面的消息,互不干擾。

1.5.5 分區(qū) 與 消費(fèi)者 的關(guān)系

Kafka 會(huì)為每個(gè) Consumer Group 分配個(gè)全局唯一 Group ID,Group 內(nèi)的 Consumer 共享該 ID,Kafka規(guī)定 每個(gè)partition信息只能被同組的一個(gè)Consumer 消費(fèi),在Zk中記錄partition 跟 Consumer關(guān)系,每個(gè)消費(fèi)者一旦確定了對(duì)一個(gè)消息分區(qū)的消費(fèi)權(quán)力,需要將其Consumer ID 寫入到 Zookeeper 對(duì)應(yīng)消息分區(qū)的臨時(shí)節(jié)點(diǎn)上。

1.5.6 消息消費(fèi)進(jìn)度 Offset 記錄

Consumer 對(duì)指定消息分區(qū)進(jìn)行消費(fèi)的過(guò)程中,需要定時(shí)地將分區(qū)消息的消費(fèi)進(jìn)度 Offset 記錄到 Zookeeper 上,以便在該 Consumer 進(jìn)行重啟或者其他 Consumer 重新接管該消息分區(qū)的消息消費(fèi)后,能夠從之前的進(jìn)度開始繼續(xù)進(jìn)行消息消費(fèi)。

1.5 7 消費(fèi)者注冊(cè)

為讓同一個(gè) Topic 下不同分區(qū)的消息盡量均衡地被多個(gè) Consumer 消費(fèi)而進(jìn)行 Consumer 與消息分區(qū)分配的過(guò)程。

  1. Consumer 啟動(dòng)后在ZK下創(chuàng)建個(gè)節(jié)點(diǎn),并且每個(gè) Consumer 會(huì)對(duì) Consumer Group 中的 Consumer 的變化注冊(cè)監(jiān)聽,目的是為了保證 Consumer 負(fù)載均衡。

  2. Consumer 會(huì)對(duì)Broker列表監(jiān)聽,發(fā)生變化會(huì)進(jìn)行 Consumer 負(fù)載均衡。

2 Kafka 生成過(guò)程

2.1 寫入方式

producer采用 push 模式將消息發(fā)布到 broker,每條消息都被 append 到 patition 中,屬于 順序?qū)懘疟P ,順序?qū)懕入S機(jī)寫要起碼提速3個(gè)數(shù)量級(jí)!

2.2 分區(qū) Partition

2.2.1  Partition 簡(jiǎn)介

消息發(fā)送時(shí)都被發(fā)送到一個(gè)topic,其本質(zhì)就是一個(gè)目錄,而topic是由一些 分區(qū)日志 Partition Logs 組成,其組織結(jié)構(gòu)如下圖所示:

六問(wèn) Kafka 為啥那么牛!

Partition發(fā)生

可以看到每個(gè) Partition 中的消息都是有序的,生產(chǎn)的消息被不斷追加到 Partition log 上,其中的每一個(gè)消息都被賦予了一個(gè)唯一的 offset 值。


六問(wèn) Kafka 為啥那么牛!

消費(fèi)者

通過(guò)分區(qū)可以 方便在集群中擴(kuò)展,可以提高并發(fā)。

形象理解:

Kafka 的設(shè)計(jì)源自生活,好比為公路運(yùn)輸,不同的起始點(diǎn)和目的地需要修不同高速公路(主題),高速公路上可以提供多條車道(分區(qū)),流量大的公路(主題)多修幾條車道(分區(qū))保證暢通,流量小的公路少修幾條車道避免浪費(fèi)。收費(fèi)站好比消費(fèi)者,車多的時(shí)候多開幾個(gè)一起收費(fèi)避免堵在路上,車少的時(shí)候開幾個(gè)讓汽車并道就好了。

2.2.2 分區(qū)原則

我們需要將producer發(fā)送的數(shù)據(jù)封裝成一個(gè)ProducerRecord對(duì)象。

六問(wèn) Kafka 為啥那么牛!

數(shù)據(jù)封裝

  1. 指明 partition 的情況下,直接將指明的值直接作為 partiton 值。

  2. 沒有指明 partition 值但有 key 的情況下,將 key 的 hash 值與 topic 的 partition 數(shù)進(jìn)行取余得到 partition 值。

  3. 既沒有 partition 值又沒有 key 值的情況下,第一次調(diào)用時(shí)隨機(jī)生成一個(gè)整數(shù)(后面每次調(diào)用在這個(gè)整數(shù)上自增),將這個(gè)值與 topic 可用的 partition 總數(shù)取余得到 partition 值,也就是常說(shuō)的 round-robin 算法。

2.3 Kafka 文件存儲(chǔ)機(jī)制

六問(wèn) Kafka 為啥那么牛!

Kafka存儲(chǔ)結(jié)構(gòu)

  1. Kafka 中消息是以 topic 進(jìn)行分類的,生產(chǎn)者跟消費(fèi)者都是面向 topic 的,topic 只是邏輯上的概念,而 Partition 是物理上的概念,每個(gè) Partition 對(duì)應(yīng)個(gè) log 文件,每個(gè)分區(qū)用.index`存放數(shù)據(jù)索引,`.log存儲(chǔ)數(shù)據(jù)。index文件中的元數(shù)據(jù)指向?qū)?yīng)log文件中Message的物理偏移地址(參考 kaldi、Neo4j)。

  2. 為防止 log 文件過(guò)大導(dǎo)致數(shù)據(jù)定位效率低下,Kafka采取了分片和索引機(jī)制,將每個(gè)partition分為多個(gè)segment。每個(gè) segment 對(duì)應(yīng).index`跟`.log。這些文件位于一個(gè)文件夾下,該文件夾的命名規(guī)則為:topic名稱 + 分區(qū)序號(hào)。例如 first 這個(gè) topic 有三個(gè)分區(qū),則其對(duì)應(yīng)的文件夾為first-0、first-1、first-2。

100000000000000000000.index 200000000000000000000.log 300000000000000170410.index 400000000000000170410.log 500000000000000239430.index 600000000000000239430.log

注意:index 和 log 文件以當(dāng)前segment的第一條消息的 offset 命名。

六問(wèn) Kafka 為啥那么牛!

數(shù)據(jù)查找過(guò)程

2.4 如何保證消息順序執(zhí)行

2.4.1 順序錯(cuò)亂
  1. Kafka 一個(gè) topic,一個(gè) partition,一個(gè) Consumer,但是 Consumer 內(nèi)部進(jìn)行多線程消費(fèi),這樣數(shù)據(jù)也會(huì)出現(xiàn)順序錯(cuò)亂問(wèn)題。

    六問(wèn) Kafka 為啥那么牛!

  2. 多線程消費(fèi)
  3. 數(shù)據(jù)有順序的數(shù)據(jù)寫入到了不同的 partition 里面,不同的消費(fèi)者去消費(fèi),但是每個(gè) Consumer 的執(zhí)行時(shí)間是不固定的,無(wú)法保證先讀到消息的 Consumer 一定先完成操作,這樣就會(huì)出現(xiàn)消息并沒有按照順序執(zhí)行,造成數(shù)據(jù)順序錯(cuò)誤。

六問(wèn) Kafka 為啥那么牛!

多個(gè)消費(fèi)者

2.4.2 解決辦法
  1. 確保同一個(gè)消息發(fā)送到同一個(gè) partition,一個(gè)topic,一個(gè)partition,一個(gè)consumer,內(nèi)部單線程消費(fèi)。

  1. 寫入同一個(gè)Partition的信息一定有序。

  2. 給信息指定一個(gè)key,key相同則一定寫入同一個(gè)partition。

  3. 從同一個(gè)Partition讀取信息一定有序。

六問(wèn) Kafka 為啥那么牛!

單線程消費(fèi)

  1. 在1的基礎(chǔ)上,在一個(gè) Consumer 上根據(jù)信息ID映射到不同隊(duì)列,以此加速消費(fèi)。

六問(wèn) Kafka 為啥那么牛!

內(nèi)存隊(duì)列

4 數(shù)據(jù)可靠性

4.1 消息傳遞語(yǔ)義

消息傳遞語(yǔ)義 message delivery semantic ,Kafka 為確保消息在 producer 和 consumer 之間傳輸。有以下三種傳輸保障(delivery guarantee):

  1. at most once:最多一次,消息可能會(huì)丟,但絕不會(huì)重復(fù)傳輸。

  2. at least once:至少一次,消息絕不會(huì)丟,但可能會(huì)重復(fù)傳輸。

  3. exactly once:精確傳遞一次。消息被處理且只會(huì)被處理一次。不丟失不重復(fù)就一次。

理想情況下肯定希望系統(tǒng)的消息傳遞是嚴(yán)格 exactly once,但很難做到。接下來(lái)會(huì)按照 消息的傳播流程大致說(shuō)下。

4.2 信息從生產(chǎn)者到 Broker

4.2.1 生產(chǎn)者信息發(fā)送至Broker

大致步驟如下:

  1. producer 從 ZK 找到目標(biāo) Partition 的 Leader 元數(shù)據(jù)。

  2. producer 發(fā)送消息給 Leader。

  3. Leader 接受消息持久化,然后根據(jù)acks配置選擇如何同步Follower。

  4. Followder 按照前面說(shuō)的同步數(shù)據(jù)后給Leader回復(fù)ack。

  5. Leader 跟 Follower 同步完畢后 Leader 給 producer 回復(fù) ack。

對(duì)于Leader回復(fù) ack,Kafka 為用戶提供了三種可靠性級(jí)別,用戶根據(jù)對(duì)可靠性和延遲的要求進(jìn)行權(quán)衡。

  1. request.required.acks = 0

  1. producer不等待broker 的ack,提供了一個(gè)最低的延遲,broker接收到還沒有寫入磁盤就已經(jīng)返回,當(dāng)broker故障時(shí)有可能丟失數(shù)據(jù),對(duì)應(yīng) At Most Once 模式。

  2. 但凡沒落盤成功信息就丟失了,一般生產(chǎn)不用。

  1. request.required.acks  = 1

  1. 此乃默認(rèn)值,producer 等待 broker 的 ack,partition 的leader落盤成功后返回ack,如果在follower同步成功之前l(fā)eader故障,那么將會(huì)丟失數(shù)據(jù);認(rèn)為leader返回 信息就成功了。

  1. request.required.acks = -1 / all

  1. producer 等待 broker 的 ack,partition 的 leader 和 follower (ISR中的)全部落盤成功后才返回 ack。

  2. 但如果在 leader 收到信息返回ok,follower 收到信息但是發(fā)送 ack 時(shí) leader 故障,此時(shí)生產(chǎn)者會(huì)重新給follower 發(fā)送個(gè)信息。

  3. 對(duì)應(yīng) At Least Once 模式。

4.2.2 如何保證冪等性

如果業(yè)務(wù)需要數(shù)據(jù)  Exactly Once,在早期的 Kafka 版本中 只能在下游去重,現(xiàn)在引入了個(gè)冪等性,意思就是無(wú)論生產(chǎn)者發(fā)送多少個(gè)重復(fù)消息,Server端只會(huì)持久化一條數(shù)據(jù),

At Least Once + 冪等性 = Exactly Once

啟動(dòng)冪等性,在生產(chǎn)者參數(shù)中 enable.idompotence= true,開啟冪等性的生產(chǎn)者在初始化時(shí)候會(huì)被分配一個(gè)PID,發(fā)送同一個(gè)Partition的消息會(huì)附帶Sequence Number,Broker會(huì)對(duì)做緩存,以此來(lái)判斷唯一性。但是如果PID重啟就會(huì)發(fā)生變化,同時(shí)不同partition也具有不同的主鍵,冪等性無(wú)法保證跨分區(qū)會(huì)話的 Exactly Once。

4.3 Kafka Broker 信息落磁盤

六問(wèn) Kafka 為啥那么牛!

數(shù)據(jù)落盤過(guò)程

Kafka Broker 收到信息后,如何落盤是通過(guò) producer.type 來(lái)設(shè)定的,一般兩個(gè)值。

  1. sync,默認(rèn)模式,數(shù)據(jù)必須最終落盤才算OK。

  2. async,異步模式,數(shù)據(jù)刷新到OS的 Page Cache就返回,此時(shí)如果機(jī)器突然出問(wèn)題,信息就丟失了。

4.4 消費(fèi)者從 Kafka Broker 消費(fèi)數(shù)據(jù)

六問(wèn) Kafka 為啥那么牛!

消費(fèi)數(shù)據(jù)
Consumer 是以 Consumer Group 消費(fèi)者組的方式工作,由一個(gè)或者多個(gè)消費(fèi)者組成一個(gè)組,共同消費(fèi)一個(gè)topic。每個(gè)分區(qū)在同一時(shí)間只能由group中的一個(gè)消費(fèi)者讀取,但是多個(gè)group可以同時(shí)消費(fèi)這個(gè)partition。如果一個(gè)消費(fèi)者失敗了,那么其他的 group 成員會(huì)自動(dòng)負(fù)載均衡讀取之前失敗的消費(fèi)者讀取的分區(qū)。Consumer Group 從 Broker 拉取消息來(lái)消費(fèi)主要分為兩個(gè)階段:

  1. 獲得數(shù)據(jù),提交 Offset。

  2. 開始處理數(shù)據(jù)。

如果你先提交 offset 再處理數(shù)據(jù)可能在處理數(shù)據(jù)時(shí)出現(xiàn)異常導(dǎo)致數(shù)據(jù)丟失。而如果你先處理數(shù)據(jù)再提交 offset, 如果提交 offset 失敗可能導(dǎo)致信息重復(fù)消費(fèi)。

PS:

pull 模式不足之處是,如果 kafka 沒有數(shù)據(jù),消費(fèi)者可能會(huì)陷入循環(huán)中,一直返回空數(shù)據(jù)。針對(duì)這一點(diǎn),Kafka的消費(fèi)者在消費(fèi)數(shù)據(jù)時(shí)會(huì)傳入一個(gè)時(shí)長(zhǎng)參數(shù) timeout,如果當(dāng)前沒有數(shù)據(jù)可供消費(fèi),consumer會(huì)等待一段時(shí)間之后再返回,這段時(shí)長(zhǎng)即為 timeout。

5 Kafka 分區(qū)分配策略

同一個(gè) group.id 中的消費(fèi)者,對(duì)于一個(gè) topic 中的多個(gè) partition 中的消息消費(fèi),存在著一定的分區(qū)分配策略。

在 Kafka 中存在著兩種分區(qū)分配策略,通過(guò) partition.assignment.strategy 來(lái)設(shè)置。

  1. RangeAssignor 范圍分區(qū)策略,也是默認(rèn)模式。

  2. RoundRobinAssignor 分配策略,輪詢分區(qū)模式。

5.1  RangeAssignor 范圍分區(qū)策略

Range 范圍分區(qū)策略是對(duì)每個(gè) topic 而言的。首先對(duì)同一個(gè) topic 里面的分區(qū)按照序號(hào)進(jìn)行排序,并對(duì)消費(fèi)者按照字母順序進(jìn)行排序。假如現(xiàn)在有 10 個(gè)分區(qū),3 個(gè)消費(fèi)者,排序后的分區(qū)將會(huì)是p0~p9。消費(fèi)者排序完之后將會(huì)是C1-0、C2-0、C3-0。通過(guò) Partitions數(shù) / Consumer數(shù) 來(lái)決定每個(gè)消費(fèi)者應(yīng)該消費(fèi)幾個(gè)分區(qū)。如果除不盡,那么前面幾個(gè)消費(fèi)者將會(huì)多消費(fèi) 1 個(gè)分區(qū)。

消費(fèi)者 消費(fèi)的分區(qū)
C1-0 消費(fèi) p0、1、2、3分區(qū)
C2-0 消費(fèi) 4、5、6分區(qū)
C3-0 消費(fèi) 7、8、9分區(qū)

Range 范圍分區(qū)的弊端

如上只是針對(duì) 1 個(gè) topic 而言,C1-0 消費(fèi)者多消費(fèi)1個(gè)分區(qū)影響不是很大。如果有 N 多個(gè) topic,那么針對(duì)每個(gè) topic,消費(fèi)者 C1-0 都將多消費(fèi) 1 個(gè)分區(qū),topic越多,C1-0 消費(fèi)的分區(qū)會(huì)比其他消費(fèi)者明顯多消費(fèi) N 個(gè)分區(qū)。這就是 Range 范圍分區(qū)的一個(gè)很明顯的弊端了.

5.2  RoundRobinAssignor 輪詢分區(qū)策略

RoundRobin 輪詢分區(qū)策略是把所有的 partition 和所有的 consumer 都列出來(lái),然后按照 hascode 進(jìn)行排序,最后通過(guò)輪詢算法來(lái)分配 partition 給到各個(gè)消費(fèi)者。輪詢分區(qū)分為如下兩種情況:

  1. 同一個(gè) Consumer Group 內(nèi) Consumer  訂閱信息相同

  2. 同一個(gè) Consumer Group 內(nèi) Consumer  訂閱信息不相同

5.2.1 Consumer Group 內(nèi) Consumer  訂閱信息相同

如果同一消費(fèi)組內(nèi),所有的消費(fèi)者訂閱的消息都是相同的,那么 RoundRobin 策略的分區(qū)分配會(huì)是均勻的。

例如同一消費(fèi)者組中,有 3 個(gè)消費(fèi)者C0、C1和C2,都訂閱了 2 個(gè)主題 t0 和 t1,并且每個(gè)主題都有 3 個(gè)分區(qū)(p0、p1、p2),那么所訂閱的所以分區(qū)可以標(biāo)識(shí)為t0p0、t0p1、t0p2、t1p0、t1p1、t1p2。最終分區(qū)分配結(jié)果如下:

消費(fèi)者 消費(fèi)的分區(qū)
C0 消費(fèi) t0p0、t1p0 分區(qū)
C1 消費(fèi) t0p1、t1p1 分區(qū)
C2 消費(fèi) t0p2、t1p2 分區(qū)
5.2.1 Consumer Group 內(nèi) Consumer  訂閱信息不相同

同一消費(fèi)者組內(nèi),所訂閱的消息是不相同的,那么分區(qū)分配就不是完全的輪詢分配,有可能會(huì)導(dǎo)致分區(qū)分配的不均勻。如果某個(gè)消費(fèi)者沒有訂閱消費(fèi)組內(nèi)的某個(gè) topic,那么在分配分區(qū)的時(shí)候,此消費(fèi)者將不會(huì)分配到這個(gè) topic 的任何分區(qū)。

例如同一消費(fèi)者組中有3個(gè)消費(fèi)者C0、C1、C2,他們共訂閱了 3 個(gè)主題t0、t1、t2,這 3 個(gè)主題分別有 1、2、3 個(gè)分區(qū)(即t0有1個(gè)分區(qū)(p0),t1有2個(gè)分區(qū)(p0、p1),t2有3個(gè)分區(qū)(p0、p1、p2)),即整個(gè)消費(fèi)者所訂閱的所有分區(qū)可以標(biāo)識(shí)為 t0p0、t1p0、t1p1、t2p0、t2p1、t2p2。然后消費(fèi)者 C0 訂閱的是主題t0,消費(fèi)者C1訂閱的是主題t0和t1,消費(fèi)者C2訂閱的是主題t0、t1和t2,最終分區(qū)分配結(jié)果如下:

消費(fèi)者 消費(fèi)的分區(qū)
C0 消費(fèi) t0p0 分區(qū)
C1 消費(fèi) t1p0 分區(qū)
C2 消費(fèi) t1p1、 t2p0、 t2p1、 t2p2 分區(qū)

6 Kafka 高效讀寫

Kafka 可支持百萬(wàn) TPS 跟如下幾個(gè)特性有關(guān)。

6.1 順序讀寫數(shù)據(jù)

信息存儲(chǔ)在硬盤中,硬盤由很多盤片組成,顯微鏡觀察盤片會(huì)看見盤片表面凹凸不平,凸起的地方被磁化代表數(shù)字1,凹的地方是沒有被磁化代表數(shù)字0,因此硬盤可以以二進(jìn)制來(lái)存儲(chǔ)表示文字、圖片等信息。

六問(wèn) Kafka 為啥那么牛!

磁盤平面圖

上圖是硬盤的實(shí)際圖,可能無(wú)法理解內(nèi)部構(gòu)造,我們來(lái)看個(gè)形象的圖:


六問(wèn) Kafka 為啥那么牛!

磁盤內(nèi)部圖

  1. 系統(tǒng)通過(guò)磁頭從盤面讀取數(shù)據(jù),磁頭在盤面上的飛行高度只是人類頭發(fā)直徑的千分之一。

  2. 硬盤里的盤片跟CD光盤的長(zhǎng)相類似,一個(gè)盤片有上下兩個(gè)盤面,每個(gè)盤面都可以存儲(chǔ)數(shù)據(jù)。

  3. 每個(gè)盤面會(huì)被劃分出超級(jí)多的同心圓磁道,同心圓的半徑是不同的。

  4. 所有磁盤上的同一磁道構(gòu)成一個(gè)柱面,相同磁道的同一個(gè)扇區(qū)被稱為簇。數(shù)據(jù)的讀寫按照柱面從上到下進(jìn)行,一個(gè)柱面寫滿后,才移到下一個(gè)扇區(qū)開始寫數(shù)據(jù)。

  5. 一個(gè)磁道是被劃分成一段段的圓弧(扇區(qū)),每個(gè)扇區(qū)用來(lái)存儲(chǔ) 512個(gè)字節(jié)跟其他信息。由于同心圓的扇區(qū)弧度相同而半徑不同所以外圈線速度比內(nèi)圈線速度大。

  6. 系統(tǒng)每次讀取一個(gè)扇區(qū)效率太低,所以操作系統(tǒng)是按照block來(lái)進(jìn)行讀取數(shù)據(jù)的,一個(gè)block(塊)一般有多個(gè)扇區(qū)組成。在每塊的大小是 4~64KB。

  7. 頁(yè)page,默認(rèn)4KB,操作系統(tǒng)經(jīng)常與內(nèi)存和硬盤這兩種存儲(chǔ)設(shè)備進(jìn)行通信,類似于塊的概念,都需要一種虛擬的基本單位。所以與內(nèi)存操作,是虛擬一個(gè)頁(yè)的概念來(lái)作為最小單位。與硬盤打交道,就是以塊為最小單位。

  1. 扇區(qū):硬盤的最小讀寫單元

  2. 塊/簇:是操作系統(tǒng)針對(duì)硬盤讀寫的最小單元

  3. page:是內(nèi)存與操作系統(tǒng)之間操作的最小單元。

一次訪盤的讀/寫請(qǐng)求完成過(guò)程由三個(gè)動(dòng)作組成:

  1. 尋道:磁頭從開始移動(dòng)到數(shù)據(jù)所在磁道所需要的時(shí)間,平均10ms左右。

  2. 旋轉(zhuǎn)延遲:盤片旋轉(zhuǎn)將請(qǐng)求數(shù)據(jù)所在扇區(qū)移至讀寫磁頭下方所需要的時(shí)間,旋轉(zhuǎn)延遲取決于磁盤轉(zhuǎn)速。如果是 5400 轉(zhuǎn)每分鐘的磁盤,平均大概為 5 ms。

  3. 數(shù)據(jù)傳輸:磁頭位從目標(biāo)扇區(qū)第一個(gè)位置,到訪問(wèn)完所有數(shù)據(jù)的耗時(shí)。假如5400轉(zhuǎn)的磁道有400個(gè)扇區(qū),我只訪問(wèn)一個(gè)則耗時(shí) 0.0278ms。

可以發(fā)現(xiàn)讀取主要耗時(shí)是在前兩個(gè),如果我順序讀取則尋道跟旋轉(zhuǎn)延遲只用一次即可。而如果隨機(jī)讀取呢則可能經(jīng)歷多次尋道跟旋轉(zhuǎn)延遲,兩者相差幾乎 3個(gè)數(shù)量級(jí)。

六問(wèn) Kafka 為啥那么牛!

隨機(jī)跟順序讀寫在磁盤跟內(nèi)存中

6.2  Memory Mapped Files 內(nèi)存映射文件

  1. 虛擬內(nèi)存系統(tǒng) 通過(guò)將虛擬內(nèi)存分割為稱作虛擬頁(yè)(Virtual Page,VP)大小固定的塊,一般情況下,每個(gè)虛擬頁(yè)的大小默認(rèn)是4KB。同樣的,物理內(nèi)存也被分割為物理頁(yè)(Physical Page,PP),也為4KB。

  2. 服務(wù)器可直接用 操作系統(tǒng)的 Page 來(lái)實(shí)現(xiàn)物理內(nèi)存到文件的映射,用戶操作讀寫數(shù)據(jù)會(huì)直接到Page中,操作系統(tǒng)會(huì)根據(jù)映射自動(dòng)的將對(duì)物理內(nèi)存的操作同步到硬盤上。實(shí)現(xiàn)類似順序讀寫內(nèi)存的功能。

  3. 缺點(diǎn)在Broker信息落盤時(shí)候也說(shuō)了,落的不是真正磁盤可能導(dǎo)致數(shù)據(jù)丟失。

六問(wèn) Kafka 為啥那么牛!

內(nèi)存映射

6.3 Zero Copy

6.3.1  直接內(nèi)存存取 DMA

CPU 發(fā)出指令操作 IO 來(lái)進(jìn)行讀寫操作,大部分情況下其實(shí)只是把數(shù)據(jù)讀取到內(nèi)存,然后從內(nèi)存?zhèn)鞯絀O即可,所以數(shù)據(jù)其實(shí)可以不經(jīng)過(guò)CPU的。

Direct Memory Access的出現(xiàn)就是為批量數(shù)據(jù)的輸入/輸出而提速的。DMA 是指外部設(shè)備不通過(guò)CPU而直接與系統(tǒng)內(nèi)存交換數(shù)據(jù)的接口技術(shù)。這樣數(shù)據(jù)的傳送速度就取決于存儲(chǔ)器和外設(shè)的工作速度。

如果數(shù)據(jù)傳輸?shù)臅r(shí)候只用到了 DMA 傳輸而沒經(jīng)過(guò) CPU 復(fù)制數(shù)據(jù),則我們稱之為零拷貝 Zero Copy。用了 Zero Copy 技術(shù)耗時(shí)性能起碼減半。

6.3.2 Kafka 讀寫對(duì)比

六問(wèn) Kafka 為啥那么牛!

零拷貝

如上黑色流程是沒用Zero Copy技術(shù)流程:

  1. DMA傳輸,磁盤讀取數(shù)據(jù)到操作系統(tǒng)內(nèi)存 Page Cache 區(qū)。

  2. CPU搬運(yùn),數(shù)據(jù)從 Page Cache 區(qū)數(shù)據(jù)復(fù)制到用戶內(nèi)存區(qū)。

  3. CPU搬運(yùn),數(shù)據(jù)從用戶內(nèi)存區(qū)到  Socket Cache 區(qū)。

  4. DMA傳輸,數(shù)據(jù)從 Socket Cache 區(qū)傳輸?shù)?NIC網(wǎng)卡緩存區(qū)。

紅色流程是用Zero Copy技術(shù)流程:

  1. DMA傳輸,磁盤讀取數(shù)據(jù)到操作系統(tǒng)內(nèi)存 Page Cache 區(qū)。

  2. DMA傳輸,數(shù)據(jù)從 系統(tǒng)內(nèi)存 Page Cache 區(qū)傳輸?shù)?NIC網(wǎng)卡緩存區(qū)。

6.4 Batch Deal

消費(fèi)者拉取數(shù)據(jù)的時(shí)候,Kafka 不是一個(gè)一個(gè)的來(lái)送數(shù)據(jù)的,而是批量發(fā)送來(lái)處理的,這樣可以節(jié)省網(wǎng)絡(luò)傳輸,增大系統(tǒng)的TPS,不過(guò)也有個(gè)缺點(diǎn)就是,我們的數(shù)據(jù)不是真正的實(shí)時(shí)處理的,而真正的實(shí)時(shí)還是要看Flink。

7 參考

  1. Kafka 為什么要分區(qū) :https://www.zhihu.com/question/28925721

  2. 關(guān)于磁盤讀取:https://blog.csdn.net/holybin/article/details/21175781

  3. Kafka百萬(wàn)TPS:https://mp.weixin.qq.com/s/Fb1cW0oN7xYeb1oI2ixtgQ


免責(zé)聲明:本文內(nèi)容由21ic獲得授權(quán)后發(fā)布,版權(quán)歸原作者所有,本平臺(tái)僅提供信息存儲(chǔ)服務(wù)。文章僅代表作者個(gè)人觀點(diǎn),不代表本平臺(tái)立場(chǎng),如有問(wèn)題,請(qǐng)聯(lián)系我們,謝謝!

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉