鋰電池供電電源電路設(shè)計(jì)(升壓、充電管理等)
首先,筆者通過查資料得知,一般標(biāo)稱為3.7V的鋰電池的電壓范圍是在2.8V~4.2V,如果說想要得到穩(wěn)定的5V、3.8V和3.3V電壓,顯然不能直接得到,需要借助特定電源芯片來實(shí)現(xiàn)。那么該如何選擇電源芯片呢?首先,要得到5V電壓的話,毋庸置疑,必須得用升壓芯片了。那么,3.8V和3.3V兩種電壓,是否可以直接由鋰電池經(jīng)過LDO來實(shí)現(xiàn)呢?沒毛病,實(shí)現(xiàn)也確實(shí)能實(shí)現(xiàn),只不過,似乎有點(diǎn)浪費(fèi)鋰電池的電量,因?yàn)椴还苁悄目頛DO,始終都是輸入電壓要高于輸出電壓的,這樣一來,以得到3.3V電壓為例,鋰電池的電壓最多放到3.3V多一點(diǎn),就不能繼續(xù)得到穩(wěn)定的3.3V電壓了,這樣顯然是不行的!
思來想去,也只有采用“先升壓、再降壓”的方案了,選擇一款合適的升壓芯片,先將鋰電池的電壓升壓至5V,再通過降壓芯片,將電壓分別穩(wěn)壓至3.8V和3.3V,這樣似乎就能滿足我們的要求了。
當(dāng)然,市面上的升壓和降壓的芯片確實(shí)是比較多,筆者之前嘗試過了一種方案,但是感覺不是特別好,于是,后面又找了另外一家的芯片。在廠家技術(shù)的指導(dǎo)下,對(duì)之前的電路進(jìn)行了改善。那么廢話不多說,接下來,筆者就跟大家來分享一下我的這套方案。
首先,是鋰電池充電管理部分,筆者選用的是TC4056A這款芯片來作為單節(jié)鋰電池的充電管理芯片:
這款TC4056A也是市面上比較常見的一款單節(jié)鋰電池充電管理芯片,充電電壓固定在4.2V,最大充電電流可大1A,同時(shí)自帶鋰電池溫度檢測(cè)、欠壓閉鎖、自動(dòng)再充電和兩個(gè)用于指示充電、結(jié)束的LED狀態(tài)引腳。眼尖的高手們或許發(fā)現(xiàn)了筆者電路上的一個(gè)問題,那就是,鋰電池充電部分并沒有帶保護(hù)電路,是不是有安全隱患?其實(shí)不然,因?yàn)楣P者使用的電池是鋁包電池,而非18650那種鋰電池,這種鋁包電池本身就已經(jīng)帶了保護(hù)板,所以筆者也就沒有再多此一舉了,那樣也浪費(fèi)物料。
接下來,我們就來看下升壓部分的電路,鋰電池升壓部分筆者采用了一顆型號(hào)為KF2185的同步升壓芯片,這款芯片的同步升壓效率最高可達(dá)94%,持續(xù)帶載能力可以達(dá)到2A以上,可調(diào)節(jié)電壓輸出,外圍電路也是很簡(jiǎn)單。
接下來,就是3.8V的穩(wěn)壓芯片,筆者這里選用的也是一款可以電壓輸出的芯片KF7416,這款芯片的轉(zhuǎn)換效率也是最高可達(dá)到95%,外圍電路也是非常的簡(jiǎn)單,SOT23-6的封裝,也算是很節(jié)省空間了。
最后,就是3.3V電壓的穩(wěn)壓電路了,關(guān)于3.3V電壓其實(shí)有兩種渠道可以獲得,一是從5V得到,另外一種就是從3.8V得到。由于筆者這里的3.8V是要給4G模塊供電的,而且,出于省電考慮,在平時(shí)用不上4G模塊的時(shí)候,是需要將4G模塊的電源單獨(dú)斷開的,而MCU和其他的3.3V的模塊又是需要一直上電的,因此,這里就不能直接用3.8V來穩(wěn)壓了。關(guān)于3.3V的穩(wěn)壓芯片實(shí)在是太多了,筆者也就隨手選了一個(gè)性價(jià)比還不錯(cuò)的ME6211來使用了。
另外順便提下,在有些鋰電池應(yīng)用中,如果不需要用到其他的電壓而只需要用到3.3V的電壓時(shí),我們也可以選擇一個(gè)自帶升壓降壓的芯片來實(shí)現(xiàn),就無需先升壓再降壓了,比如,筆者了解到的KF3448這款芯片,就能達(dá)到我們的目的:
當(dāng)然咯,在選擇這些芯片的時(shí)候,很多時(shí)候還是要考慮帶載能力、功耗、體積、價(jià)格等方面的因素,大家在應(yīng)用中還是要根據(jù)自己的實(shí)際情況作出合理的選擇,或許筆者的這個(gè)方案不是最優(yōu)的,但是也可以作為一種參考,希望能給大家?guī)韼椭?/span>
END
來源:電源研發(fā)精英圈版權(quán)歸原作者所有,如有侵權(quán),請(qǐng)聯(lián)系刪除。
▍