當(dāng)前位置:首頁(yè) > 消費(fèi)電子 > 消費(fèi)電子
[導(dǎo)讀]隨機(jī)智能手機(jī)的普及,在日常生活中,大多數(shù)人在做任何事情的時(shí)候,都會(huì)隨身攜帶手機(jī)。如果開(kāi)啟手機(jī)中的傳感器,當(dāng)用戶(hù)運(yùn)動(dòng)時(shí),就可以采集大量的用戶(hù)信息,根據(jù)這些信息,就

隨機(jī)智能手機(jī)的普及,在日常生活中,大多數(shù)人在做任何事情的時(shí)候,都會(huì)隨身攜帶手機(jī)。如果開(kāi)啟手機(jī)中的傳感器,當(dāng)用戶(hù)運(yùn)動(dòng)時(shí),就可以采集大量的用戶(hù)信息,根據(jù)這些信息,就可以判斷當(dāng)前用戶(hù)的運(yùn)動(dòng)模式,如行走、上樓梯、下樓梯、坐、站立、躺下等等?;谶@些運(yùn)動(dòng)模式,設(shè)計(jì)不同的場(chǎng)景,為健身類(lèi)或運(yùn)動(dòng)類(lèi)應(yīng)用(APP)增加一些有趣功能。

在智能手機(jī)中,常見(jiàn)的位置信息傳感器就是 加速度傳感器(Accelerometer)和陀螺儀(Gyroscope)。

加速度傳感器:用于測(cè)量手機(jī)移動(dòng)速度的變化和位置的變化;

陀螺儀:用于測(cè)試手機(jī)移動(dòng)方向的變化和旋轉(zhuǎn)速度的變化;

傳感器

本文主要根據(jù)手機(jī)的傳感器數(shù)據(jù),訓(xùn)練深度學(xué)習(xí)模型,用于預(yù)測(cè)用戶(hù)的運(yùn)動(dòng)模式。

數(shù)據(jù)

本例的數(shù)據(jù)來(lái)源于UCI(即UC Irvine,加州大學(xué)歐文分校)。數(shù)據(jù)由年齡在19-48歲之間的30位志愿者,智能手機(jī)固定于他們的腰部,執(zhí)行六項(xiàng)動(dòng)作,即行走、上樓梯、下樓梯、坐、站立、躺下,同時(shí)在手機(jī)中存儲(chǔ)傳感器(加速度傳感器和陀螺儀)的三維(XYZ軸)數(shù)據(jù)。傳感器的頻率被設(shè)置為50HZ(即每秒50次記錄)。對(duì)于所輸出傳感器的維度數(shù)據(jù),進(jìn)行噪聲過(guò)濾(Noise Filter),以2.56秒的固定窗口滑動(dòng),同時(shí)窗口之間包含50%的重疊,即每個(gè)窗口的數(shù)據(jù)維度是128(2.56*50)維,根據(jù)不同的運(yùn)動(dòng)類(lèi)別,將數(shù)據(jù)進(jìn)行標(biāo)注。傳感器含有三類(lèi):身體(Body)的加速度傳感器、整體(Total)的加速度傳感器、陀螺儀。

以下是根據(jù)數(shù)據(jù)繪制的運(yùn)動(dòng)曲線(xiàn),站立(紅色)、坐(綠色)、躺下(橙色)的振幅較小,而行走(藍(lán)色)、上樓梯(紫色)、下樓梯(黑色)的振幅較大。

 

 

運(yùn)動(dòng)曲線(xiàn)

以下是在行走(Walking)中,三類(lèi)傳感器的三個(gè)軸,共9維數(shù)據(jù)的運(yùn)動(dòng)曲線(xiàn):

 

 

傳感器 - 行走

以下是在坐(Sitting)中的運(yùn)動(dòng)曲線(xiàn):

 

 

傳感器 - 坐

通過(guò)觀察可知,不同運(yùn)動(dòng)模式的傳感器數(shù)據(jù)曲線(xiàn)擁有一定的差異性,但是有些運(yùn)動(dòng)模式的差異性并不明顯,如行走、上樓梯、下樓梯之間;相同運(yùn)動(dòng)模式的傳感器數(shù)據(jù)曲線(xiàn)也各不相同。

在數(shù)據(jù)源中,70%的數(shù)據(jù)作為訓(xùn)練數(shù)據(jù),30%的數(shù)據(jù)作為測(cè)試數(shù)據(jù),生成訓(xùn)練數(shù)據(jù)的志愿者與生成測(cè)試數(shù)據(jù)的不同,以保證數(shù)據(jù)的嚴(yán)謹(jǐn)性,符合在實(shí)際應(yīng)用中預(yù)測(cè)未知用戶(hù)動(dòng)作的準(zhǔn)則。

UCI數(shù)據(jù)源

模型

模型是基于深度學(xué)習(xí)的DeepConvLSTM算法,算法融合了卷積(Convolution)和LSTM操作,既可以學(xué)習(xí)樣本的空間屬性,也可以學(xué)習(xí)時(shí)間屬性。在卷積操作中,通過(guò)將信號(hào)與卷積核相乘,過(guò)濾波形信號(hào),保留高層信息。在LSTM操作中,通過(guò)記憶或遺忘前序信息,發(fā)現(xiàn)信號(hào)之間的時(shí)序關(guān)系。

DeepConvLSTM算法的框架,如下:

 

 

DeepConvLSTM

將每類(lèi)傳感器(身體加速度、整體加速度、陀螺儀)的3個(gè)坐標(biāo)軸(XYZ)數(shù)據(jù),合并成一個(gè)數(shù)據(jù)矩陣,即 (128, 3)維,作為輸入數(shù)據(jù),每類(lèi)傳感器均創(chuàng)建1個(gè)DeepConvLSTM模型,共3個(gè)模型。通過(guò)3次卷積操作和3次LSTM操作,將數(shù)據(jù)抽象為128維的LSTM輸出向量。

在CNN的卷積單元中,通過(guò)卷積(1x1卷積核)、BN、MaxPooling(2維chihua)、Dropout的組合操作,連續(xù)3組,最后一組執(zhí)行Dropout。通過(guò)MaxPooling的降維操作( 2^3=8),將128維的數(shù)據(jù)轉(zhuǎn)為為16維的高層特征。

 

 

CNN

在RNN的時(shí)序單元中,通過(guò)LSTM操作,隱含層神經(jīng)元數(shù)設(shè)置為128個(gè),連續(xù)三次,將16維的卷積特征轉(zhuǎn)換為128維的時(shí)序特征,再執(zhí)行Dropout操作。

 

 

LSTM

最后,將3個(gè)傳感器的3個(gè)模型輸出,合并(Merge)為一個(gè)輸入,即 128*3=384,再執(zhí)行Dropout、全連接(Dense)、BN等操作,最后使用Softmax激活函數(shù),輸出6個(gè)類(lèi)別的概率。

 

 

Merged

選擇概率較大的類(lèi)別,作為最終預(yù)測(cè)的運(yùn)動(dòng)模式。

效果

在第48層中,即Concatenate層,將3個(gè)傳感器的LSTM輸出合并(Merge)成1個(gè)輸入,不同類(lèi)別的特征,效果也不同,如:

Merged Layer

訓(xùn)練參數(shù):

epochs = 100batch_size = 256kernel_size = 3pool_size = 2dropout_rate = 0.15n_classes = 6

最終效果,在測(cè)試集中,準(zhǔn)確率約為95%左右:

loss: 0.0131 - acc: 0.9962 - val_loss: 0.1332 - val_acc: 0.9535val_f1: 0.953794 — val_precision: 0.958533 — val_recall 0.949101

如果繼續(xù)調(diào)整參數(shù),還可以提升準(zhǔn)確率。

通過(guò)深度學(xué)習(xí)算法訓(xùn)練的用戶(hù)動(dòng)作識(shí)別模型,可以應(yīng)用于移動(dòng)端進(jìn)行場(chǎng)景檢測(cè),包含行走、上樓梯、下樓梯、坐、站立、躺下等六種動(dòng)作。同時(shí),95%的準(zhǔn)確率已經(jīng)滿(mǎn)足大多數(shù)產(chǎn)品的需求。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專(zhuān)欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車(chē)的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車(chē)技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車(chē)工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車(chē)。 SODA V工具的開(kāi)發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車(chē) 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶(hù)希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開(kāi)幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱(chēng),數(shù)字世界的話(huà)語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱(chēng)"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉