為何要謹(jǐn)慎地增加音頻處理系統(tǒng)的THD?
掃描二維碼
隨時(shí)隨地手機(jī)看文章
THD(總諧波失真,total harmonic distortion):是信號諧波失真的一項(xiàng)指標(biāo),表達(dá)為所有諧波成分功率之和與基本頻率信號功率的比值。較低的總諧波失真使得音響、電子放大器或麥克風(fēng)等設(shè)備產(chǎn)生更加精確、較少諧波、與原始采樣信號接近的輸出信號。
為獲得更高音頻系統(tǒng)保真度,文章將介紹一種新的概念。許多系統(tǒng),特別是應(yīng)用到家庭影院/迷你小型樂隊(duì)市場的一些系統(tǒng),都謹(jǐn)慎地給輸出信號增加失真。盡管這樣做看似不符合我們的常識(shí),但設(shè)計(jì)人員考慮這么做是有原因的。這種技術(shù)的主要目的是最大化平均功率輸出,同時(shí)限制峰值的出現(xiàn)。
一些客戶在一些列產(chǎn)品中都使用相同的功率放大器IC.這讓他們可以更大批量地采購一種器件,從而降低成本,簡化庫存。他們可能會(huì)使用一種小功率電源來節(jié)省成本??蛻魰?huì)使用一個(gè)小功率電源的閉環(huán)、固定增益放大器。它限制了輸出電壓擺動(dòng)(通過限制輸出),這樣可以保護(hù)小功率電源免受過電流狀態(tài)的損壞。但是,一個(gè)簡單的衰減器便可讓系統(tǒng)更加安靜。讓輸出稍微失真,可極大增加感知RMS功率。在確定增加失真程度時(shí)需小心謹(jǐn)慎,不得增加過多!
對于其他客戶而言,限制其信號的電壓輸出可幫助限制揚(yáng)聲器漂移。但是,在這種情況下應(yīng)小心操作,因?yàn)檫M(jìn)入揚(yáng)聲器的高RMS功率可能會(huì)引起可靠性問題。
在數(shù)字處理系統(tǒng)中,可通過使數(shù)字采樣飽和給信號引入THD.也就是說,使用足夠增益,推移最高有效位,讓其超出數(shù)字采樣大小。例如,你有一個(gè)24位字,你的采樣為0x900000.使用12 Db增益,最高音頻位便超出采樣的最高有效位(MSB)。
之后,下調(diào)該數(shù)據(jù)至你需要的音頻輸出電平。所以,其可以概括為:
圖1放大信號為削波增加THD,然后降低輸出產(chǎn)生特定峰值到峰值電壓的更平均功率
這聽起來簡單,但許多音頻處理器實(shí)際并非最高有效位=全量程音頻。例如,一些TI的音頻處理器使用一種被稱為9.23的數(shù)據(jù)格式。這種采樣數(shù)據(jù)可用下列方法表示16位或者24位數(shù)據(jù):
圖2把標(biāo)準(zhǔn)16位或者24位音頻采樣映射至32位或者48位內(nèi)存位置中
正如你看到的那樣,MSB和LSB添加了一些補(bǔ)位。LSB很容易理解—如果你削減某個(gè)16位字(使用CD播放器),則你仍然有一些無需刪減便可復(fù)制的位。
在頂端,共有9個(gè)位,用于防止音頻數(shù)據(jù)意外飽和。例如,如果你使用一個(gè)24-dB增壓的均衡器(EQ),并且你輸入一個(gè)“全量程”16位字,則你可能會(huì)非有意地讓信號飽和,也即增加失真,而這與我們努力的方向背道而馳。
削波時(shí)存在振幅損失,因此THD(后)可能允許少量增益通過THD管理器。10%失真削波帶來約–1dB輸出電平損失。
在我們的例子中,系統(tǒng)有一條9.23音頻通路。我們希望在–12 dB輸出下產(chǎn)生10%THD.平均輸入為–10 dBFS(–10 dB參考24位全量程音頻源)。
我們需要放大至全量程及以上(“溢出位”9位)。因此,在一個(gè)增壓模塊中,我們給原始源添加10 dB,以達(dá)到全量程,之后再添加27dB來填充9個(gè)溢出位。現(xiàn)在,增加3dB增益,以對信號削波??傆?jì),我們需要增加40dB增益。
現(xiàn)在,我們有一個(gè)填充音頻通路MSB的信號,并要求進(jìn)行削減,這樣便可在–12 dB下輸出內(nèi)容。這意味著削減39dB.產(chǎn)生的輸出具有10%失真,且輸出電平為–12 dB.看!我們現(xiàn)在已經(jīng)在–12 dB輸出下增加了RMS功率(通過增加失真),并同時(shí)讓電源和揚(yáng)聲器的工作都更加輕松愜意。