當(dāng)前位置:首頁 > 電源 > 電源
[導(dǎo)讀]摘要:零電壓軟開關(guān)有源鉗位正激變換器拓?fù)浞浅_m合中小功率開關(guān)電源的設(shè)計。增加變壓器勵磁電流或應(yīng)用磁飽和電感均能實現(xiàn)零電壓軟開關(guān)工作模式?;趯α汶妷很涢_關(guān)有源鉗位正激變換器拓?fù)涞睦碚摲治?,提出了一套?

摘要:零電壓軟開關(guān)有源鉗位正激變換器拓?fù)浞浅_m合中小功率開關(guān)電源的設(shè)計。增加變壓器勵磁電流或應(yīng)用磁飽和電感均能實現(xiàn)零電壓軟開關(guān)工作模式?;趯α汶妷很涢_關(guān)有源鉗位正激變換器拓?fù)涞睦碚摲治?,提出了一套實用的?yōu)化設(shè)計方法。實驗結(jié)果驗證了理論分析和設(shè)計方法。

關(guān)鍵詞:有源鉗位;正激變換器;零電壓軟開關(guān)

 

1  引言

    單端正激變換器拓?fù)湟云浣Y(jié)構(gòu)簡單、工作可靠、成本低廉而被廣泛應(yīng)用于獨立的離線式中小功率電源設(shè)計中。在計算機(jī)、通訊、工業(yè)控制、儀器儀表、醫(yī)療設(shè)備等領(lǐng)域,這類電源具有廣闊的市場需求。當(dāng)今,節(jié)能和環(huán)保已成為全球?qū)哪茉O(shè)備的基本要求。所以,供電單元的效率和電磁兼容性自然成為開關(guān)電源的兩項重要指標(biāo)。而傳統(tǒng)的單端正激拓?fù)洌捎谄浯盘匦怨ぷ髟诘谝幌笙?,并且是硬開關(guān)工作模式,決定了該電路存在一些固有的缺陷:變壓器體積大,損耗大;開關(guān)器件電壓應(yīng)力高,開關(guān)損耗大;dv/dt和di/dt大,EMI問題難以處理。

    為了克服這些缺陷,文獻(xiàn)[1][2][3]提出了有源鉗位正激變換器拓?fù)?,從根本上改變了單端正激變換器的運行特性,并且能夠?qū)崿F(xiàn)零電壓軟開關(guān)工作模式,從而大量地減少了開關(guān)器件和變壓器的功耗,降低了dv/dt和di/dt,改善了電磁兼容性。因此,有源鉗位正激變換器拓?fù)溲杆佾@得了廣泛的應(yīng)用。

    然而,有源鉗位正激變換器并非完美無缺,零電壓軟開關(guān)特性也并非總能實現(xiàn)。因而,在工業(yè)應(yīng)用中,對該電路進(jìn)行優(yōu)化設(shè)計顯得尤為重要。本文針對有源鉗位正激變換器拓?fù)?,進(jìn)行了詳細(xì)的理論分析,指出了該電路的局限性,并給出了一種優(yōu)化設(shè)計方法。

2  正激有源鉗位變換器的工作原理

    如圖1所示,有源鉗位正激變換器拓?fù)渑c傳統(tǒng)的單端正激變換器拓?fù)浠鞠嗤?,只是增加了輔助開關(guān)Sa(帶反并二極管)和儲能電容Cs,以及諧振電容Cds1、Cds2,且略去了傳統(tǒng)正激變換器的磁恢復(fù)電路。磁飽和電感Ls用來實現(xiàn)零電壓軟開關(guān),硬開關(guān)模式用短路線替代。開關(guān)S和Sa工作在互補(bǔ)狀態(tài)。為了防止開關(guān)S和Sa共態(tài)導(dǎo)通,兩開關(guān)的驅(qū)動信號間留有一定的死區(qū)時間。下面就其硬開關(guān)工作模式和零電壓軟開關(guān)工作模式分別進(jìn)行討論。為了方便分析,假設(shè):

圖1  采用磁飽和電感的有源鉗位正激軟開關(guān)變換器

    1)儲能電容Cs之容量足夠大以至于其上的電壓Vcs可視為常數(shù);

    2)輸出濾波電感Lo足夠大以至于其中的電流紋波可忽略不計;

    3)變壓器可等效成一個勵磁電感Lm和一個匝比為n的理想變壓器并聯(lián),并且初次級漏感可忽略不計;

    4)所有半導(dǎo)體器件為理想器件。

2.1  有源鉗位正激變換器硬開關(guān)工作模式

    硬開關(guān)的有源鉗位正激變換器工作狀態(tài)可分為6個工作區(qū)間,關(guān)鍵工作波形如圖2(a)所示。

    [t0t1]期間主開關(guān)S導(dǎo)通,輔助開關(guān)Sa斷開。變壓器初級線圈受到輸入電壓Vin的作用,勵磁電流線性增加,次級整流管導(dǎo)通并向負(fù)載輸出功率。t1時刻,主開關(guān)S斷開。

    [t1t2]期間負(fù)載折算到變壓器初級的電流Io和勵磁電流im給電容Cds1充電和Cds2放電,電壓Vds1迅速上升。t2時刻,Vds1上升到Vin,變壓器輸出電壓為零,負(fù)載電流從整流管D3轉(zhuǎn)移到續(xù)流管D4

    [t2t3]期間只有勵磁電流im通過Lm、Cds1、Cds2繼續(xù)諧振,并在t3時刻Vds1達(dá)到(VinVcs)。輔助開關(guān)Sa的反并二極管D2導(dǎo)通,勵磁電流給電容Cs充電并線性減小,此時,可驅(qū)動輔助開關(guān)Sa。

    [t3t4]期間變壓器初級線圈受到反向電壓Vcs的作用,勵磁電流由正變負(fù)。t4時刻,Sa斷開。

    [t4t5]期間電容Cds1、Cds2Lm發(fā)生諧振,并在t5時刻電壓Vds1下降到Vin,變壓器磁芯完成磁恢復(fù)。

    [t5t0′]期間次級整流管導(dǎo)通,變壓器次級繞組短路,給勵磁電流提供了通道。在此期間,Vds1維持在Vin,勵磁電流保持在-Im(max)。t0′時刻,主開關(guān)S被驅(qū)動導(dǎo)通,下一個開關(guān)周期開始。

    很明顯,有源鉗位正激變換器的變壓器磁芯工作在一、三象限,變換器工作占空比可超過50%。由于電容Cds1、Cds2的存在,開關(guān)S和Sa均能自然零電壓關(guān)斷,而且Sa能實現(xiàn)零電壓導(dǎo)通。但主開關(guān)管S工作在硬開關(guān)狀態(tài)。

(a)硬開關(guān)工作波形

(b)增加勵磁電流實現(xiàn)軟開關(guān)的工作波形  (c)采用磁飽和電感實現(xiàn)軟開關(guān)的工作波形

圖2  各種開關(guān)電路的工作波形

2.2  有源鉗位正激變換器零電壓軟開關(guān)模式

    從上面的分析可明顯地看出,當(dāng)變壓器勵磁電感Lm減小,勵磁電流足夠大時,[t5t0′]期間勵磁電流除了能提供負(fù)載電流外,剩余部分可用來幫助電容Cds2、Cds1充放電。電壓Vds1有可能諧振到零,從而實現(xiàn)主功率開關(guān)管S的零電壓軟開通。二極管D1可為負(fù)的勵磁電流續(xù)流。關(guān)鍵工作波形如圖2(b)所示,具體的軟開關(guān)條件將在下一節(jié)中詳細(xì)討論。很顯然,軟開關(guān)的代價是變壓器勵磁電流和開關(guān)管導(dǎo)通電流峰值大幅增加,開關(guān)管及變壓器電流應(yīng)力和通態(tài)損耗明顯加大。

2.3  應(yīng)用磁飽合電感器實現(xiàn)零電壓軟開關(guān)

    為了克服上述零電壓軟開關(guān)工作時電流應(yīng)力過大的缺點??梢栽谧儔浩鞔渭壵鞫O管上串聯(lián)一個磁飽和電感Ls,如圖1所示。當(dāng)電壓Vds1下降到Vin時,[t5t0′]期間磁飽和電感Ls瞬時阻斷整流二極管,使得變壓器勵磁電流不必負(fù)擔(dān)負(fù)載電流,而可完全用來給電容Cds2、Cds1充放電。這樣,不必大量減小變壓器勵磁電感,較小的勵磁電流就可以保證電壓Vds1諧振到零,實現(xiàn)主功率開關(guān)管的零電壓軟開通。關(guān)鍵工作波形如圖2(c)所示。

3  靜態(tài)分析和優(yōu)化設(shè)計方法

3.1  儲能電容電壓及開關(guān)管承受的電壓應(yīng)力

    根據(jù)磁芯伏?秒平衡原則,可得式(1)

    Vcs(1-D)Ts=VinDTs(1)

因為Vo=所以

    Vcs=  (2)

式中:Vin為輸入直流電壓; [!--empirenews.page--]

      Vo為輸出電壓;

      D為主開關(guān)導(dǎo)通占空比;

      Ts為開關(guān)周期;

      n為變壓器匝比。

    因此,主開關(guān)S和輔助開關(guān)Sa承受的最大電壓應(yīng)力均為VDS

    VDS==(3)

    上式說明,當(dāng)變壓器匝比愈小時,對于一定的輸入電壓和輸出電壓的變換器,開關(guān)管電壓應(yīng)力VDS愈小。所以,有源鉗位正激變換器一個顯著優(yōu)點是可以降低開關(guān)管電壓應(yīng)力,從而可選用額定電壓較低、通態(tài)電阻較小的功率開關(guān)管。另外,當(dāng)變壓器變比n確定后,開關(guān)管電壓應(yīng)力僅與占空比有關(guān),如圖3所示。顯然,當(dāng)占空比為0.5時,開關(guān)管承受最小的電壓應(yīng)力。當(dāng)輸入電壓變化時,如果將占空比設(shè)計運行在以0.5為中心的對稱范圍內(nèi),則可使開關(guān)管承受的電壓應(yīng)力基本保持恒定。

圖3  開關(guān)管電壓應(yīng)力與占空比的關(guān)系曲線

3.2  增加勵磁電流實現(xiàn)零電壓軟開關(guān)工作條件

    從開關(guān)Sa斷開到電壓Vds1諧振至零的過程,即工作區(qū)間[t4t5]和[t5t0′]。要實現(xiàn)主開關(guān)S零電壓軟開通,其導(dǎo)通驅(qū)動延遲時間必須大于以上兩區(qū)間之和。

    [t4t5]期間等效電路如圖4所示。相應(yīng)的電路微分方程是:

    Vin=LmCdsVds1(4)

    =(5)

    =VDS(6)

圖4  [t4t5]期間的等效電路

微分方程的解為:

    Vds1=cos(ωtφ)+Vin(7)

    im=-sin(ωtφ)(8)

式中:0≤tt5t4

    Imp=(9)

        φ=arctan(10)

    Cds=Cds1Cds2(11)

        ω=(12)

t5時刻,即當(dāng)

    t=t5t4=ta=(13)

    Vds1=Vin

    im=-Im(max)=-

設(shè)K=ωTs=(14)

    Im(max)=Imp=(15) [!--empirenews.page--]

    [t5t0′]期間等效電路如圖5所示。相應(yīng)的電路微分方程是:

    Vin=LmCdsVds1(16)

    =(IoIm(max))(17)

    =Vin(18)

圖5  [t5~t0′]期間的等效電路

微分方程的解為:

    Vds1=sinωtVin(19)

    im=-(Im(max)Io)cosωtIo(20)

式中:0≤tt0′-t5;

    Io=為變換器輸出電流折算到變壓器原邊的值,并且忽略了輸出電感的電流紋波。

    顯而易見,主開關(guān)零電壓開通的必要條件是:

    (Im(max)Io)≥CdsωVin(21)

    實際上,上述條件即是,變壓器勵磁電感儲存的電流除支持負(fù)載電流外,剩余能量能使電容Cds1上電壓諧振到零。Vds1Vin諧振到零所需時間tb為:

    tb=arcsin(22)

所以,主開關(guān)管零電壓導(dǎo)通所需總的導(dǎo)通延遲時間td為:

    tdtatb=(23)

    實際上,諧振頻率ω遠(yuǎn)大于開關(guān)頻率fs,即K遠(yuǎn)大于1,故式(23)可簡化為:

    td≥?(24)

3.3  應(yīng)用磁飽和電感實現(xiàn)軟開關(guān)工作的條件

    當(dāng)輔助開關(guān)Sa斷開后,由于磁飽和電感Ls瞬間相當(dāng)于開路,因此變壓器勵磁電流可完全用來對Cds2Cds1充放電。[t4t5]、[t5t0′]期間,等效電路同圖4。顯然,令式(21)和(24)中IoIo為零,即可得到主開關(guān)管零電壓導(dǎo)通的能量條件和時間條件,Im(max)CdsωVin,即:

    K≥?(25)

    td≥?(26)

    死區(qū)延遲時間,意味著PWM變換器有效占空比的損失。為了盡量減小有效占空比的損失,則K必須加大。另一方面,變換器開關(guān)頻率fs愈高,則為保持相同的有效占空比,K至少應(yīng)保持不變,即諧振頻率ω應(yīng)與開關(guān)頻率fs成比例增加。圖6給出了軟開關(guān)所需要的死區(qū)時間td和最大勵磁電流Im(max)K的關(guān)系曲線。從圖中明顯看出,采用加大勵磁電流的方法實現(xiàn)零電壓軟開關(guān)和采用磁飽和電感器比較,要求的K較大,因而有較大的勵磁電流損耗;另外,從式(15)看出,開關(guān)頻率愈高,電流峰值也愈高,變壓器的銅耗和開關(guān)管的導(dǎo)通損耗也愈大。因此,軟開關(guān)有源鉗位正激變換器工作頻率不宜太高。

圖6  軟開關(guān)所需延遲時間td和最大勵磁電流Im(max)與系數(shù)K的關(guān)系曲線

3.4  優(yōu)化設(shè)計方法

    對一給定技術(shù)指標(biāo)的DC/DC變換器,其具體參數(shù)為:輸入電壓范圍Vin(min)Vin(max),輸出電壓Vo,輸出功率Po,開關(guān)頻率fs。設(shè)計步驟如下:

    1)根據(jù)輸出功率Po、開關(guān)頻率fs選定變壓器磁芯材料,得到相應(yīng)的磁芯截面積Ae,飽和磁密Bs,窗口面積Aw等。設(shè)定最大交變磁密ΔB。

    2)確定最大電壓應(yīng)力VDS及降額系數(shù)K1。

    3)據(jù)式(27)、(28)求出變壓器匝比n和最大、最小占空比Dmax、Dmin,及正常占空比Dnorm。

    Vds=≤K1VDS(27)

    Vds=≤K1VDS(28)

    4)求出變壓器初次級匝數(shù)N1,N2。

    N1=(29)

    N2=(30) [!--empirenews.page--]    5)求出開關(guān)管電壓應(yīng)力Vds,選定主開關(guān)S和輔助開關(guān)Sa的額定電壓及確定諧振電容Cds1Cds2。

    6)設(shè)定死區(qū)延遲時間td,針對不同的軟開關(guān)實現(xiàn)方法,分別從式(21)、(24)或(25)、(26)求出所需的系數(shù)K。

    7)根據(jù)式(14)和(12)求出諧振頻率ω及變壓器初級勵磁電感量Lm。

4  設(shè)計實例和實驗結(jié)果

    應(yīng)用上述設(shè)計方法,設(shè)計1臺用于通訊設(shè)備的AC/DC變換器電源。具體技術(shù)指標(biāo)為:

    輸入電壓Vi    AC 140V~280V

    輸出電壓Vo    DC 12V

    輸出功率Po    150W

    功率因數(shù)λ         >0.95

    效率η                 >0.80

    采用常規(guī)的Boost變換器進(jìn)行功率因數(shù)校正,滿足功率因數(shù)大于0.95的指標(biāo)要求,且得到DC 440V的直流電壓??紤]到電源保持時間要求,設(shè)定有源鉗位DC/DC變換器輸入電壓工作范圍為DC 330~450V,開關(guān)頻率為100kHz,即Ts=10μs,Vinmax=450V,Vinmin=330V,Vinnorm=440V。為提高效率,有源鉗位DC/DC變換器采用了同步整流技術(shù),設(shè)計結(jié)果如下:

    1)選擇磁芯材料為TDK,PC40,EER40,Ae=1.49cm2,Bs=450mT,取ΔB=300mT。

    2)設(shè)定開關(guān)管最大電壓應(yīng)力為900V,降額系數(shù)K1為0.9。

    3)求出變壓器匝比n,最大、最小占空比DmaxDmin,及正常占空比Dnorm考慮整流管壓降和輸出電感損耗,取Vo為13V,據(jù)式(27)、(28)求出:n≤15,取n=13.3。則:Dmax=0.524,Dmin=0.384,Dnorm=0.393。

    4)據(jù)式(29)、(30)求出變壓器初次級匝數(shù)N1,N2分別為40匝和3匝。

    5)據(jù)式(3),求出當(dāng)占空比為0.384時,開關(guān)管承受最大的電壓應(yīng)力731V。S和Sa可選900V之功率場效應(yīng)管。等效漏源并聯(lián)電容Cds1為330pF,Cds2為200pF,所以Cds為530pF。

    6)設(shè)定死區(qū)時間td為350ns,采用磁飽和電感方法實現(xiàn)軟開關(guān)。則據(jù)式(26)求出K為15.4。

    7)據(jù)式(14)和(12)求出諧振頻率ω為1.54MHz,變壓器勵磁電感Lm為800μH。

    圖7(a)、7(b)、7(c)給出了實測的主開關(guān)管工作電壓、電流波形。圖7(a)顯示主開關(guān)管工作在硬開關(guān)狀態(tài)。圖7(b)和圖7(c)分別是采用增加勵磁電流方法和應(yīng)用磁飽和電感器方法實現(xiàn)零電壓軟開關(guān)的電壓電流波形,后者明顯地降低了勵磁電流和開關(guān)管電流的峰值。實測波形與理論分析完全一致。圖8、9顯示出了實測的效率曲線。從圖9中看出,當(dāng)變換器開關(guān)頻率增加時,變壓器勵磁電流損耗和開關(guān)管通態(tài)損耗所占比重增加,變換器效率降低了。實驗結(jié)果驗證了理論分析。

(a)硬開關(guān)工作模式主開關(guān)電壓、電流波形

(b)軟開關(guān)工作模式主開關(guān)電壓、電流波形  (c)軟開關(guān)工作模式主開關(guān)電壓、電流波形

圖7  實測主開關(guān)管工作電壓電流波形

圖8  效率與DC/DC變換器輸出功率Po的關(guān)系

圖9  效率與DC/DC變換器開關(guān)頻率fs的關(guān)系

5  結(jié)語

    有源鉗位正激拓?fù)浞浅_m合中小功率的DC/DC變換器電源設(shè)計。零電壓軟開關(guān)條件是變壓器勵磁電感和諧振電容的諧振頻率必須足夠大,并且有足夠的勵磁電流儲能。其代價是變壓器勵磁電流損耗和功率開關(guān)管通態(tài)損耗加大,并隨工作頻率提高而加劇。因此該變換器拓?fù)涔ぷ黝l率受到限制。采用磁飽和電感可以改善電流應(yīng)力過大的缺點。本文給出了有源鉗位正激變換器的理論分析和設(shè)計方法。一臺應(yīng)用于通訊設(shè)備,寬范圍輸入電壓的150W電源被設(shè)計出來,實驗結(jié)果證實了理論分析。 

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉